Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Moya, X., Hueso, L. E., Maccherozzi, F., Tovstolytkin, A. I., Podyalovskii, D. I., Ducati, C., Phillips, L. C., Ghidini, M., Hovorka, O., Berger, A., Vickers, M. E., Defay, E., Dhesi, S. S., & Mathur, N. D. (2012). Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nature Materials, 12(1), 52–58.

Authors 14
  1. X. Moya (first)
  2. L. E. Hueso (additional)
  3. F. Maccherozzi (additional)
  4. A. I. Tovstolytkin (additional)
  5. D. I. Podyalovskii (additional)
  6. C. Ducati (additional)
  7. L. C. Phillips (additional)
  8. M. Ghidini (additional)
  9. O. Hovorka (additional)
  10. A. Berger (additional)
  11. M. E. Vickers (additional)
  12. E. Defay (additional)
  13. S. S. Dhesi (additional)
  14. N. D. Mathur (additional)
References 32 Referenced 238
  1. Giauque, W. F. & MacDougall, D. P. Attainment of temperatures below 1° absolute by demagnetization of Gd2(SO4)3·8H2O. Phys. Rev. 43, 768 (1933). (10.1103/PhysRev.43.768) / Phys. Rev. by WF Giauque (1933)
  2. Pecharsky, V. K. & Gschneidner, K. A. Jr Giant magnetocaloric effect in Gd5Si2Ge2 . Phys. Rev. Lett. 78, 4494–4497 (1997). (10.1103/PhysRevLett.78.4494) / Phys. Rev. Lett. by VK Pecharsky (1997)
  3. Pecharsky, V. K. & Gschneidner, K. A. Jr Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ~ 20 to ~ 290 K. Appl. Phys. Lett. 70, 3299–3301 (1997). (10.1063/1.119206) / Appl. Phys. Lett. by VK Pecharsky (1997)
  4. Wada, H. & Tanabe, Y. Giant magnetocaloric effect of MnAs1−xSbx . Appl. Phys. Lett. 79, 3302–3304 (2001). (10.1063/1.1419048) / Appl. Phys. Lett. by H Wada (2001)
  5. Tegus, O., Brück, E., Buschow, K. H. J. & de Boer, F. R. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415, 150–152 (2002). (10.1038/415150a) / Nature by O Tegus (2002)
  6. Hu, F-X., Shen, B-G., Sun, J-R. & Wu, G-H. Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal. Phys. Rev. B 64, 132412 (2001). (10.1103/PhysRevB.64.132412) / Phys. Rev. B by F-X Hu (2001)
  7. Krenke, T. et al. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nature Mater. 4, 450–454 (2005). (10.1038/nmat1395) / Nature Mater. by T Krenke (2005)
  8. Krenke, T. et al. Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys. Rev. B 75, 104414 (2007). (10.1103/PhysRevB.75.104414) / Phys. Rev. B by T Krenke (2007)
  9. Sandeman, K. G. et al. Negative magnetocaloric effect from highly sensitive metamagnetism in CoMnSi1−xGex . Phys. Rev. B 74, 224436 (2006). (10.1103/PhysRevB.74.224436) / Phys. Rev. B by KG Sandeman (2006)
  10. Trung, N. T., Zhang, L., Caron, L., Buschow, K. H. J. & Brück, E. Giant magnetocaloric effects by tailoring the phase transitions. Appl. Phys. Lett. 96, 172504 (2010). (10.1063/1.3399773) / Appl. Phys. Lett. by NT Trung (2010)
  11. Fujita, A., Fujieda, S., Hasegawa, Y. & Fukamichi, K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides. Phys. Rev. B 67, 104416 (2003). (10.1103/PhysRevB.67.104416) / Phys. Rev. B by A Fujita (2003)
  12. Zhang, X. X., Tejada, J., Xin, Y., Sun, G. F., Wong, K. W. & Bohigas, X. Magnetocaloric effect in La0.67Ca0.33MnOδ and La0.60Y0.07Ca0.33MnOδ bulk materials. Appl. Phys. Lett. 69, 3596–3598 (1996). (10.1063/1.117218) / Appl. Phys. Lett. by XX Zhang (1996)
  13. Xiong, C. M., Sun, J. R., Chen, Y. F., Shen, B. G., Du, J. & Li, Y. X. Relation between magnetic entropy and resistivity in La0.67Ca0.33MnO3 . IEEE Trans. Magn. 41, 122–124 (2005). (10.1109/TMAG.2004.840132) / IEEE Trans. Magn. by CM Xiong (2005)
  14. Morelli, D. T., Mance, A. M., Mantese, J. V. & Micheli, A. L. Magnetocaloric properties of doped lanthanum manganite films. J. Appl. Phys. 79, 373–375 (1996). (10.1063/1.360840) / J. Appl. Phys. by DT Morelli (1996)
  15. Mosca, D. H., Vidal, F. & Etgens, V. H. Strain engineering of the magnetocaloric effect in MnAs epilayers. Phys. Rev. Lett. 101, 125503 (2008). (10.1103/PhysRevLett.101.125503) / Phys. Rev. Lett. by DH Mosca (2008)
  16. Fäth, M. et al. Spatially inhomogeneous metal–insulator transition in doped manganites. Science 285, 1540–1542 (1999). (10.1126/science.285.5433.1540) / Science by M Fäth (1999)
  17. Israel, C. et al. Translating reproducible phase-separated texture in manganites into reproducible two-state low-field magnetoresistance: An imaging and transport study. Phys. Rev. B 78, 054409 (2008). (10.1103/PhysRevB.78.054409) / Phys. Rev. B by C Israel (2008)
  18. Tishin, A. M. & Spichkin, Y. I. The Magnetocaloric Effect and its Applications (Institute of Physics, 2003). (10.1887/0750309229) / The Magnetocaloric Effect and its Applications by AM Tishin (2003)
  19. Planes, A., Mañosa, Ll. & Acet, M. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter 21, 233201 (2009). (10.1088/0953-8984/21/23/233201) / J. Phys. Condens. Matter by A Planes (2009)
  20. Caron, L. et al. On the determination of the magnetic entropy change in materials with first-order transitions. J. Magn. Magn. Mater. 321, 3559–3566 (2009). (10.1016/j.jmmm.2009.06.086) / J. Magn. Magn. Mater. by L Caron (2009)
  21. Eerenstein, W., Wiora, M., Prieto, J. L., Scott, J. F. & Mathur, N. D. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nature Mater. 6, 348–351 (2007). (10.1038/nmat1886) / Nature Mater. by W Eerenstein (2007)
  22. Lee, M. K., Nath, T. K., Eom, C. B., Smoak, M. C. & Tsui, F. Strain modification of epitaxial perovskite oxide thin films using structural transitions of ferroelectric BaTiO3 substrate. Appl. Phys. Lett. 77, 3547–3549 (2000). (10.1063/1.1328762) / Appl. Phys. Lett. by MK Lee (2000)
  23. Dale, D., Fleet, A., Brock, J. D. & Suzuki, Y. Dynamically tuning properties of epitaxial colossal magnetoresistance thin films. Appl. Phys. Lett. 82, 3725–3727 (2003). (10.1063/1.1578186) / Appl. Phys. Lett. by D Dale (2003)
  24. Kay, H. F. & Vousden, P. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. Phil. Mag. 40, 1019–1040 (1949). (10.1080/14786444908561371) / Phil. Mag. by HF Kay (1949)
  25. Hibble, S. J., Cooper, S. P., Hannon, A. C., Fawcett, I. D. & Greenblatt, M. Local distortions in the colossal magnetoresistive manganates La0.70Ca0.30MnO3, La0.80Ca0.20MnO3 and La0.70Sr0.30MnO3 revealed by total neutron diffraction. J. Phys. Condens. Matter 11, 9221–9238 (1999). (10.1088/0953-8984/11/47/308) / J. Phys. Condens. Matter by SJ Hibble (1999)
  26. Bah, R., Bitok, D., Rakhimov, R. R., Noginov, M. M., Pradhan, A. K. & Noginova, N. Ferromagnetic resonance studies on colossal magnetoresistance films: Effects of homogeneity and light illumination. J. Appl. Phys 99, 08Q312 (2006). (10.1063/1.2171082) / J. Appl. Phys by R Bah (2006)
  27. Mathur, N. & Littlewood, P. Mesoscopic texture in manganites. Phys. Today 56, 25–30 (January, 2003). (10.1063/1.1554133) / Phys. Today by N Mathur (2003)
  28. Salje, E. K. H. A pre-martensitic elastic anomaly in nanomaterials: Elasticity of surface and interface layers. J. Phys. Condens. Matter 20, 485003 (2008). (10.1088/0953-8984/20/48/485003) / J. Phys. Condens. Matter by EKH Salje (2008)
  29. Gschneidner, K. A. Jr & Pecharsky, V. K. Magnetocaloric materials. Annu. Rev. Mater. Sci. 30, 387–429 (2000). (10.1146/annurev.matsci.30.1.387) / Annu. Rev. Mater. Sci. by KA Gschneidner Jr (2000)
  30. Possenriede, E., Jacobs, P. & Schirmer, O. F. Paramagnetic defects in BaTiO3 and their role in light-induced charge transport: I. ESR studies. J. Phys. Condens. Matter 4, 4719–4742 (1992). (10.1088/0953-8984/4/19/013) / J. Phys. Condens. Matter by E Possenriede (1992)
  31. Kittel, C. On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155–161 (1948). (10.1103/PhysRev.73.155) / Phys. Rev. by C Kittel (1948)
  32. Schmool, D. S. & Barandiarán, J. M. Ferromagnetic resonance and spin wave resonance in multiphase materials: Theoretical considerations. J. Phys. Condens. Matter 10, 10679–10700 (1998). (10.1088/0953-8984/10/47/018) / J. Phys. Condens. Matter by DS Schmool (1998)
Dates
Type When
Created 12 years, 10 months ago (Oct. 26, 2012, 6:47 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 2:39 p.m.)
Indexed 1 week, 1 day ago (Aug. 23, 2025, 9:47 p.m.)
Issued 12 years, 10 months ago (Oct. 28, 2012)
Published 12 years, 10 months ago (Oct. 28, 2012)
Published Online 12 years, 10 months ago (Oct. 28, 2012)
Published Print 12 years, 8 months ago (Jan. 1, 2013)
Funders 0

None

@article{Moya_2012, title={Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain}, volume={12}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3463}, DOI={10.1038/nmat3463}, number={1}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Moya, X. and Hueso, L. E. and Maccherozzi, F. and Tovstolytkin, A. I. and Podyalovskii, D. I. and Ducati, C. and Phillips, L. C. and Ghidini, M. and Hovorka, O. and Berger, A. and Vickers, M. E. and Defay, E. and Dhesi, S. S. and Mathur, N. D.}, year={2012}, month=oct, pages={52–58} }