Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Wang, D., Xin, H. L., Hovden, R., Wang, H., Yu, Y., Muller, D. A., DiSalvo, F. J., & Abruña, H. D. (2012). Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials, 12(1), 81–87.

Authors 8
  1. Deli Wang (first)
  2. Huolin L. Xin (additional)
  3. Robert Hovden (additional)
  4. Hongsen Wang (additional)
  5. Yingchao Yu (additional)
  6. David A. Muller (additional)
  7. Francis J. DiSalvo (additional)
  8. Héctor D. Abruña (additional)
References 50 Referenced 1,925
  1. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012). (10.1038/nature11115) / Nature by MK Debe (2012)
  2. Gasteiger, H. A. & Markovic, N. M. Just a dream-or future reality? Science 324, 48–49 (2009). (10.1126/science.1172083) / Science by HA Gasteiger (2009)
  3. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem. 1, 552–556 (2009). (10.1038/nchem.367) / Nature Chem. by J Greeley (2009)
  4. Shao, M. H., Shoemaker, K., Peles, A., Kaneko, K. & Protsailo, L. Pt monolayer on porous Pd–Cu alloys as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 132, 9253–9255 (2010). (10.1021/ja101966a) / J. Am. Chem. Soc. by MH Shao (2010)
  5. Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Mater. 6, 241–247 (2007). (10.1038/nmat1840) / Nature Mater. by VR Stamenkovic (2007)
  6. Yano, H., Kataoka, M., Yamashita, H., Uchida, H. & Watanabe, M. Oxygen reduction activity of carbon-supported Pt–M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Langmuir 23, 6438–6445 (2007). (10.1021/la070078u) / Langmuir by H Yano (2007)
  7. Antolini, E., Salgado, J. R. C. & Gonzalez, E. R. The stability of Pt–M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells—a literature review and tests on a Pt–Co catalyst. J. Power Sources 160, 957–968 (2006). (10.1016/j.jpowsour.2006.03.006) / J. Power Sources by E Antolini (2006)
  8. Rao, C. V. & Viswanathan, B. ORR activity and direct ethanol fuel cell performance of carbon-supported Pt–M (M = Fe, Co, and Cr) alloys prepared by polyol reduction method. J. Phys. Chem. C 113, 18907–18913 (2009). (10.1021/jp902933e) / J. Phys. Chem. C by CV Rao (2009)
  9. Kim, J., Lee, Y. & Sun, S. H. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 132, 4996–4997 (2010). (10.1021/ja1009629) / J. Am. Chem. Soc. by J Kim (2010)
  10. Malheiro, A. R., Perez, J. & Villullas, H. M. Well-alloyed PtFe/C nanocatalysts of controlled composition and same particle size: Oxygen reduction and methanol tolerance. J. Electrochem. Soc. 156, B51–B58 (2009). (10.1149/1.3006082) / J. Electrochem. Soc. by AR Malheiro (2009)
  11. Stamenkovic, V. R., Mun, B. S., Mayrhofer, K. J. J., Ross, P. N. & Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128, 8813–8819 (2006). (10.1021/ja0600476) / J. Am. Chem. Soc. by VR Stamenkovic (2006)
  12. Hwang, S. J. et al. Ternary Pt–Fe–Co alloy electrocatalysts prepared by electrodeposition: Elucidating the roles of Fe and Co in the oxygen reduction reaction. J. Phys. Chem. C 115, 2483–2488. (10.1021/jp106947q) / The Journal of Physical Chemistry C by Seung Jun Hwang (2011)
  13. Min, M. K., Cho, J. H., Cho, K. W. & Kim, H. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim. Acta 45, 4211–4217 (2000). (10.1016/S0013-4686(00)00553-3) / Electrochim. Acta by MK Min (2000)
  14. Stamenkovic, V., Schmidt, T. J., Ross, P. N. & Markovic, N. M. Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106, 11970–11979 (2002). (10.1021/jp021182h) / J. Phys. Chem. B by V Stamenkovic (2002)
  15. Xin, H. L. et al. Atomic-resolution spectroscopic imaging of ensembles of nanocatalyst particles across the life of a fuel cell. Nano Lett. 12, 490–497 (2012). (10.1021/nl203975u) / Nano Lett. by HL Xin (2012)
  16. Wu, J. B. et al. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 132, 4984–4985 (2010). (10.1021/ja100571h) / J. Am. Chem. Soc. by JB Wu (2010)
  17. Zhang, J., Yang, H. Z., Fang, J. Y. & Zou, S. Z. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 10, 638–644 (2010). (10.1021/nl903717z) / Nano Lett. by J Zhang (2010)
  18. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chem. 2, 454–460 (2010). (10.1038/nchem.623) / Nature Chem. by P Strasser (2010)
  19. Mani, P., Srivastava, R. & Strasser, P. Dealloyed Pt-Cu core–shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J. Phys. Chem. C 112, 2770–2778 (2008). (10.1021/jp0776412) / J. Phys. Chem. C by P Mani (2008)
  20. Srivastava, R., Mani, P., Hahn, N. & Strasser, P. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew. Chem. Int. Ed. 46, 8988–8991 (2007). (10.1002/anie.200703331) / Angew. Chem. Int. Ed. by R Srivastava (2007)
  21. Jeon, M. K., Zhang, Y. A. & McGinn, P. J. A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electro-reduction reaction. Electrochim. Acta 55, 5318–5325 (2010). (10.1016/j.electacta.2010.04.056) / Electrochim. Acta by MK Jeon (2010)
  22. Mukerjee, S., Srinivasan, S., Soriaga, M. P. & McBreen, J. Role of structural and electronic-properties of Pt and Pt alloys on electrocatalysis of oxygen reduction- an in-situ XANES and EXAFS investigation. J. Electrochem. Soc. 142, 1409–1422 (1995). (10.1149/1.2048590) / J. Electrochem. Soc. by S Mukerjee (1995)
  23. Kang, Y. & Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn–Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 132, 7568–7569 (2010). (10.1021/ja100705j) / J. Am. Chem. Soc. by Y Kang (2010)
  24. Gong, K. P., Su, D. & Adzic, R. R. Platinum-monolayer shell on AuNi0.5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. J. Am. Chem. Soc. 132, 14364–14366 (2010). (10.1021/ja1063873) / J. Am. Chem. Soc. by KP Gong (2010)
  25. Sasaki, K. et al. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem. Int. Ed. 49, 8602–8607 (2010). (10.1002/anie.201004287) / Angew. Chem. Int. Ed. by K Sasaki (2010)
  26. Wang, J. X. et al. Oxygen reduction on well-defined core–shell nanocatalysts: Particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 131, 17298–17302 (2009). (10.1021/ja9067645) / J. Am. Chem. Soc. by JX Wang (2009)
  27. Neyerlin, K. C., Srivastava, R., Yu, C. F. & Strasser, P. Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). J. Power Sources 186, 261–267 (2009). (10.1016/j.jpowsour.2008.10.062) / J. Power Sources by KC Neyerlin (2009)
  28. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chem. 3, 546–550 (2011). (10.1038/nchem.1069) / Nature Chem. by J Suntivich (2011)
  29. Liang, Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Mater. 10, 780–786 (2012). (10.1038/nmat3087) / Nature Mater. by Y Liang (2012)
  30. Li, Y. et al. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nature Nanotech. 7, 394–400 (2012). (10.1038/nnano.2012.72) / Nature Nanotech. by Y Li (2012)
  31. Li, X., Colon-Mercado, H. R., Wu, G., Lee, J-W. & Popov, B. N. Development of method for synthesis of Pt–Co cathode catalysts for PEM fuel cells. Electrochem. Solid State Lett. 10, B201–B205 (2007). (10.1149/1.2777009) / Electrochem. Solid State Lett. by X Li (2007)
  32. Watanabe, M., Tsurumi, K., Mizukami, T., Nakamura, T. & Stonehart, P. Activity and stability of ordered and disordered Co–Pt alloys for phosphoric acid fuel cells. J. Electrochem. Soc. 141, 2659–2668 (1994). (10.1149/1.2059162) / J. Electrochem. Soc. by M Watanabe (1994)
  33. Koh, S., Toney, M. F. & Strasser, P. Activity-stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochim. Acta 52, 2765–2774 (2007). (10.1016/j.electacta.2006.08.039) / Electrochim. Acta by S Koh (2007)
  34. Liu, Z. F., Jackson, G. S. & Eichhorn, B. W. PtSn intermetallic, core–shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angew. Chem. Int. Ed. 49, 3173–3176 (2010). (10.1002/anie.200907019) / Angew. Chem. Int. Ed. by ZF Liu (2010)
  35. Ji, X. L. et al. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nature Chem. 2, 286–293 (2010). (10.1038/nchem.553) / Nature Chem. by XL Ji (2010)
  36. Ghosh, T., Vukmirovic, M. B., DiSalvo, F. J. & Adzic, R. R. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: Potential for significantly improving properties. J. Am. Chem. Soc. 132, 906–907 (2010). (10.1021/ja905850c) / J. Am. Chem. Soc. by T Ghosh (2010)
  37. Wang, D., Zhuang, L. & Lu, J. T. An alloying-degree-controlling step in the impregnation synthesis of PtRu/C catalysts. J. Phys. Chem. C 111, 16416–16422 (2007). (10.1021/jp073062l) / J. Phys. Chem. C by D Wang (2007)
  38. Wang, D. L., Lu, S. F. & Jiang, S. P. Pd/HPW-PDDA-MWCNTs as effective non-Pt electrocatalysts for oxygen reduction reaction of fuel cells. Chem. Commun. 46, 2058–2060 (2010). (10.1039/b927375a) / Chem. Commun. by DL Wang (2010)
  39. Wang, D. L., Lu, S. F. & Jiang, S. P. Tetrahydrofuran-functionalized multi-walled carbon nanotubes as effective support for Pt and PtSn electrocatalysts of fuel cells. Electrochim. Acta 55, 2964–2971 (2010). (10.1016/j.electacta.2010.01.031) / Electrochim. Acta by DL Wang (2010)
  40. Wang, D. L. et al. Highly stable and CO-tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells. J. Am. Chem. Soc. 132, 10218–10220 (2010). (10.1021/ja102931d) / J. Am. Chem. Soc. by DL Wang (2010)
  41. Wang, D. L. et al. Pt-decorated PdCo@Pd/C Core–shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 132, 17664–17666 (2010). (10.1021/ja107874u) / J. Am. Chem. Soc. by DL Wang (2010)
  42. Hovden, R., Xin, H. L. & Muller, D. A. Extended depth of field for high-resolution scanning transmission electron microscopy. Micros. Microanal. 17, 75–80 (2011). (10.1017/S1431927610094171) / Micros. Microanal. by R Hovden (2011)
  43. Warren, R. X-ray Diffraction (Dover, 1990). / X-ray Diffraction by R Warren (1990)
  44. Crewe, A. V., Wall, J. & Langmore, J. Visibility of single atoms. Science 168, 1338–1340 (1970). (10.1126/science.168.3937.1338) / Science by AV Crewe (1970)
  45. Muller, D. A. et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008). (10.1126/science.1148820) / Science by DA Muller (2008)
  46. Kourkoutis, L. F. et al. Atomic-resolution spectroscopic imaging of oxide interfaces. Phil. Mag. 90, 4731–4749 (2010). (10.1080/14786435.2010.518983) / Phil. Mag. by LF Kourkoutis (2010)
  47. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2001). / Electrochemical Methods: Fundamentals and Applications by AJ Bard (2001)
  48. Vidal-Iglesias, F. J., Aran-Ais, R. M., Solla-Gullon, J., Herrero, E. & Feliu, J. M. Electrochemical characterization of shape-controlled Pt nanoparticles in different supporting electrolytes. ACS Catal. 2, 901–910 (2011). (10.1021/cs200681x) / ACS Catal. by FJ Vidal-Iglesias (2011)
  49. Chen, Q-S., Solla-Gullon, J., Sun, S-G. & Feliu, J. M. The potential of zero total charge of Pt nanoparticles and polycrystalline electrodes with different surface structure: The role of anion adsorption in fundamental electrocatalysis. Electrochim. Acta 55, 7982–7994 (2010). (10.1016/j.electacta.2010.03.050) / Electrochim. Acta by Q-S Chen (2010)
  50. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011). (10.1038/nature09718) / Nature by PY Huang (2011)
Dates
Type When
Created 12 years, 10 months ago (Oct. 26, 2012, 6:47 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 2:39 p.m.)
Indexed 24 minutes ago (Aug. 30, 2025, 1:20 a.m.)
Issued 12 years, 10 months ago (Oct. 28, 2012)
Published 12 years, 10 months ago (Oct. 28, 2012)
Published Online 12 years, 10 months ago (Oct. 28, 2012)
Published Print 12 years, 7 months ago (Jan. 1, 2013)
Funders 0

None

@article{Wang_2012, title={Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts}, volume={12}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3458}, DOI={10.1038/nmat3458}, number={1}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Wang, Deli and Xin, Huolin L. and Hovden, Robert and Wang, Hongsen and Yu, Yingchao and Muller, David A. and DiSalvo, Francis J. and Abruña, Héctor D.}, year={2012}, month=oct, pages={81–87} }