Bibliography
Wang, D., Xin, H. L., Hovden, R., Wang, H., Yu, Y., Muller, D. A., DiSalvo, F. J., & Abruña, H. D. (2012). Structurally ordered intermetallic platinumâcobalt coreâshell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials, 12(1), 81â87.
References
50
Referenced
1,925
-
Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).
(
10.1038/nature11115
) / Nature by MK Debe (2012) -
Gasteiger, H. A. & Markovic, N. M. Just a dream-or future reality? Science 324, 48–49 (2009).
(
10.1126/science.1172083
) / Science by HA Gasteiger (2009) -
Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem. 1, 552–556 (2009).
(
10.1038/nchem.367
) / Nature Chem. by J Greeley (2009) -
Shao, M. H., Shoemaker, K., Peles, A., Kaneko, K. & Protsailo, L. Pt monolayer on porous Pd–Cu alloys as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 132, 9253–9255 (2010).
(
10.1021/ja101966a
) / J. Am. Chem. Soc. by MH Shao (2010) -
Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Mater. 6, 241–247 (2007).
(
10.1038/nmat1840
) / Nature Mater. by VR Stamenkovic (2007) -
Yano, H., Kataoka, M., Yamashita, H., Uchida, H. & Watanabe, M. Oxygen reduction activity of carbon-supported Pt–M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Langmuir 23, 6438–6445 (2007).
(
10.1021/la070078u
) / Langmuir by H Yano (2007) -
Antolini, E., Salgado, J. R. C. & Gonzalez, E. R. The stability of Pt–M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells—a literature review and tests on a Pt–Co catalyst. J. Power Sources 160, 957–968 (2006).
(
10.1016/j.jpowsour.2006.03.006
) / J. Power Sources by E Antolini (2006) -
Rao, C. V. & Viswanathan, B. ORR activity and direct ethanol fuel cell performance of carbon-supported Pt–M (M = Fe, Co, and Cr) alloys prepared by polyol reduction method. J. Phys. Chem. C 113, 18907–18913 (2009).
(
10.1021/jp902933e
) / J. Phys. Chem. C by CV Rao (2009) -
Kim, J., Lee, Y. & Sun, S. H. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 132, 4996–4997 (2010).
(
10.1021/ja1009629
) / J. Am. Chem. Soc. by J Kim (2010) -
Malheiro, A. R., Perez, J. & Villullas, H. M. Well-alloyed PtFe/C nanocatalysts of controlled composition and same particle size: Oxygen reduction and methanol tolerance. J. Electrochem. Soc. 156, B51–B58 (2009).
(
10.1149/1.3006082
) / J. Electrochem. Soc. by AR Malheiro (2009) -
Stamenkovic, V. R., Mun, B. S., Mayrhofer, K. J. J., Ross, P. N. & Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128, 8813–8819 (2006).
(
10.1021/ja0600476
) / J. Am. Chem. Soc. by VR Stamenkovic (2006) -
Hwang, S. J. et al. Ternary Pt–Fe–Co alloy electrocatalysts prepared by electrodeposition: Elucidating the roles of Fe and Co in the oxygen reduction reaction. J. Phys. Chem. C 115, 2483–2488.
(
10.1021/jp106947q
) / The Journal of Physical Chemistry C by Seung Jun Hwang (2011) -
Min, M. K., Cho, J. H., Cho, K. W. & Kim, H. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim. Acta 45, 4211–4217 (2000).
(
10.1016/S0013-4686(00)00553-3
) / Electrochim. Acta by MK Min (2000) -
Stamenkovic, V., Schmidt, T. J., Ross, P. N. & Markovic, N. M. Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106, 11970–11979 (2002).
(
10.1021/jp021182h
) / J. Phys. Chem. B by V Stamenkovic (2002) -
Xin, H. L. et al. Atomic-resolution spectroscopic imaging of ensembles of nanocatalyst particles across the life of a fuel cell. Nano Lett. 12, 490–497 (2012).
(
10.1021/nl203975u
) / Nano Lett. by HL Xin (2012) -
Wu, J. B. et al. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 132, 4984–4985 (2010).
(
10.1021/ja100571h
) / J. Am. Chem. Soc. by JB Wu (2010) -
Zhang, J., Yang, H. Z., Fang, J. Y. & Zou, S. Z. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 10, 638–644 (2010).
(
10.1021/nl903717z
) / Nano Lett. by J Zhang (2010) -
Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chem. 2, 454–460 (2010).
(
10.1038/nchem.623
) / Nature Chem. by P Strasser (2010) -
Mani, P., Srivastava, R. & Strasser, P. Dealloyed Pt-Cu core–shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J. Phys. Chem. C 112, 2770–2778 (2008).
(
10.1021/jp0776412
) / J. Phys. Chem. C by P Mani (2008) -
Srivastava, R., Mani, P., Hahn, N. & Strasser, P. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew. Chem. Int. Ed. 46, 8988–8991 (2007).
(
10.1002/anie.200703331
) / Angew. Chem. Int. Ed. by R Srivastava (2007) -
Jeon, M. K., Zhang, Y. A. & McGinn, P. J. A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electro-reduction reaction. Electrochim. Acta 55, 5318–5325 (2010).
(
10.1016/j.electacta.2010.04.056
) / Electrochim. Acta by MK Jeon (2010) -
Mukerjee, S., Srinivasan, S., Soriaga, M. P. & McBreen, J. Role of structural and electronic-properties of Pt and Pt alloys on electrocatalysis of oxygen reduction- an in-situ XANES and EXAFS investigation. J. Electrochem. Soc. 142, 1409–1422 (1995).
(
10.1149/1.2048590
) / J. Electrochem. Soc. by S Mukerjee (1995) -
Kang, Y. & Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn–Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 132, 7568–7569 (2010).
(
10.1021/ja100705j
) / J. Am. Chem. Soc. by Y Kang (2010) -
Gong, K. P., Su, D. & Adzic, R. R. Platinum-monolayer shell on AuNi0.5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. J. Am. Chem. Soc. 132, 14364–14366 (2010).
(
10.1021/ja1063873
) / J. Am. Chem. Soc. by KP Gong (2010) -
Sasaki, K. et al. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem. Int. Ed. 49, 8602–8607 (2010).
(
10.1002/anie.201004287
) / Angew. Chem. Int. Ed. by K Sasaki (2010) -
Wang, J. X. et al. Oxygen reduction on well-defined core–shell nanocatalysts: Particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 131, 17298–17302 (2009).
(
10.1021/ja9067645
) / J. Am. Chem. Soc. by JX Wang (2009) -
Neyerlin, K. C., Srivastava, R., Yu, C. F. & Strasser, P. Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). J. Power Sources 186, 261–267 (2009).
(
10.1016/j.jpowsour.2008.10.062
) / J. Power Sources by KC Neyerlin (2009) -
Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chem. 3, 546–550 (2011).
(
10.1038/nchem.1069
) / Nature Chem. by J Suntivich (2011) -
Liang, Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Mater. 10, 780–786 (2012).
(
10.1038/nmat3087
) / Nature Mater. by Y Liang (2012) -
Li, Y. et al. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nature Nanotech. 7, 394–400 (2012).
(
10.1038/nnano.2012.72
) / Nature Nanotech. by Y Li (2012) -
Li, X., Colon-Mercado, H. R., Wu, G., Lee, J-W. & Popov, B. N. Development of method for synthesis of Pt–Co cathode catalysts for PEM fuel cells. Electrochem. Solid State Lett. 10, B201–B205 (2007).
(
10.1149/1.2777009
) / Electrochem. Solid State Lett. by X Li (2007) -
Watanabe, M., Tsurumi, K., Mizukami, T., Nakamura, T. & Stonehart, P. Activity and stability of ordered and disordered Co–Pt alloys for phosphoric acid fuel cells. J. Electrochem. Soc. 141, 2659–2668 (1994).
(
10.1149/1.2059162
) / J. Electrochem. Soc. by M Watanabe (1994) -
Koh, S., Toney, M. F. & Strasser, P. Activity-stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochim. Acta 52, 2765–2774 (2007).
(
10.1016/j.electacta.2006.08.039
) / Electrochim. Acta by S Koh (2007) -
Liu, Z. F., Jackson, G. S. & Eichhorn, B. W. PtSn intermetallic, core–shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angew. Chem. Int. Ed. 49, 3173–3176 (2010).
(
10.1002/anie.200907019
) / Angew. Chem. Int. Ed. by ZF Liu (2010) -
Ji, X. L. et al. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nature Chem. 2, 286–293 (2010).
(
10.1038/nchem.553
) / Nature Chem. by XL Ji (2010) -
Ghosh, T., Vukmirovic, M. B., DiSalvo, F. J. & Adzic, R. R. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: Potential for significantly improving properties. J. Am. Chem. Soc. 132, 906–907 (2010).
(
10.1021/ja905850c
) / J. Am. Chem. Soc. by T Ghosh (2010) -
Wang, D., Zhuang, L. & Lu, J. T. An alloying-degree-controlling step in the impregnation synthesis of PtRu/C catalysts. J. Phys. Chem. C 111, 16416–16422 (2007).
(
10.1021/jp073062l
) / J. Phys. Chem. C by D Wang (2007) -
Wang, D. L., Lu, S. F. & Jiang, S. P. Pd/HPW-PDDA-MWCNTs as effective non-Pt electrocatalysts for oxygen reduction reaction of fuel cells. Chem. Commun. 46, 2058–2060 (2010).
(
10.1039/b927375a
) / Chem. Commun. by DL Wang (2010) -
Wang, D. L., Lu, S. F. & Jiang, S. P. Tetrahydrofuran-functionalized multi-walled carbon nanotubes as effective support for Pt and PtSn electrocatalysts of fuel cells. Electrochim. Acta 55, 2964–2971 (2010).
(
10.1016/j.electacta.2010.01.031
) / Electrochim. Acta by DL Wang (2010) -
Wang, D. L. et al. Highly stable and CO-tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells. J. Am. Chem. Soc. 132, 10218–10220 (2010).
(
10.1021/ja102931d
) / J. Am. Chem. Soc. by DL Wang (2010) -
Wang, D. L. et al. Pt-decorated PdCo@Pd/C Core–shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 132, 17664–17666 (2010).
(
10.1021/ja107874u
) / J. Am. Chem. Soc. by DL Wang (2010) -
Hovden, R., Xin, H. L. & Muller, D. A. Extended depth of field for high-resolution scanning transmission electron microscopy. Micros. Microanal. 17, 75–80 (2011).
(
10.1017/S1431927610094171
) / Micros. Microanal. by R Hovden (2011) - Warren, R. X-ray Diffraction (Dover, 1990). / X-ray Diffraction by R Warren (1990)
-
Crewe, A. V., Wall, J. & Langmore, J. Visibility of single atoms. Science 168, 1338–1340 (1970).
(
10.1126/science.168.3937.1338
) / Science by AV Crewe (1970) -
Muller, D. A. et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008).
(
10.1126/science.1148820
) / Science by DA Muller (2008) -
Kourkoutis, L. F. et al. Atomic-resolution spectroscopic imaging of oxide interfaces. Phil. Mag. 90, 4731–4749 (2010).
(
10.1080/14786435.2010.518983
) / Phil. Mag. by LF Kourkoutis (2010) - Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2001). / Electrochemical Methods: Fundamentals and Applications by AJ Bard (2001)
-
Vidal-Iglesias, F. J., Aran-Ais, R. M., Solla-Gullon, J., Herrero, E. & Feliu, J. M. Electrochemical characterization of shape-controlled Pt nanoparticles in different supporting electrolytes. ACS Catal. 2, 901–910 (2011).
(
10.1021/cs200681x
) / ACS Catal. by FJ Vidal-Iglesias (2011) -
Chen, Q-S., Solla-Gullon, J., Sun, S-G. & Feliu, J. M. The potential of zero total charge of Pt nanoparticles and polycrystalline electrodes with different surface structure: The role of anion adsorption in fundamental electrocatalysis. Electrochim. Acta 55, 7982–7994 (2010).
(
10.1016/j.electacta.2010.03.050
) / Electrochim. Acta by Q-S Chen (2010) -
Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).
(
10.1038/nature09718
) / Nature by PY Huang (2011)
Dates
Type | When |
---|---|
Created | 12 years, 10 months ago (Oct. 26, 2012, 6:47 a.m.) |
Deposited | 3 years, 1 month ago (July 6, 2022, 2:39 p.m.) |
Indexed | 24 minutes ago (Aug. 30, 2025, 1:20 a.m.) |
Issued | 12 years, 10 months ago (Oct. 28, 2012) |
Published | 12 years, 10 months ago (Oct. 28, 2012) |
Published Online | 12 years, 10 months ago (Oct. 28, 2012) |
Published Print | 12 years, 7 months ago (Jan. 1, 2013) |
@article{Wang_2012, title={Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts}, volume={12}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3458}, DOI={10.1038/nmat3458}, number={1}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Wang, Deli and Xin, Huolin L. and Hovden, Robert and Wang, Hongsen and Yu, Yingchao and Muller, David A. and DiSalvo, Francis J. and Abruña, Héctor D.}, year={2012}, month=oct, pages={81–87} }