Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Fujita, T., Guan, P., McKenna, K., Lang, X., Hirata, A., Zhang, L., Tokunaga, T., Arai, S., Yamamoto, Y., Tanaka, N., Ishikawa, Y., Asao, N., Yamamoto, Y., Erlebacher, J., & Chen, M. (2012). Atomic origins of the high catalytic activity of nanoporous gold. Nature Materials, 11(9), 775–780.

Authors 15
  1. Takeshi Fujita (first)
  2. Pengfei Guan (additional)
  3. Keith McKenna (additional)
  4. Xingyou Lang (additional)
  5. Akihiko Hirata (additional)
  6. Ling Zhang (additional)
  7. Tomoharu Tokunaga (additional)
  8. Shigeo Arai (additional)
  9. Yuta Yamamoto (additional)
  10. Nobuo Tanaka (additional)
  11. Yoshifumi Ishikawa (additional)
  12. Naoki Asao (additional)
  13. Yoshinori Yamamoto (additional)
  14. Jonah Erlebacher (additional)
  15. Mingwei Chen (additional)
References 42 Referenced 842
  1. Hvolbæk, B. et al. Catalytic activity of Au nanoparticles. Nano Today 2, 14–18 (2007). (10.1016/S1748-0132(07)70113-5) / Nano Today by B Hvolbæk (2007)
  2. Haruta, M., Kobayashi, T., Sano, H. & Yamada, N. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0 °C. Chem. Lett. 16, 405–408 (1987). (10.1246/cl.1987.405) / Chem. Lett. by M Haruta (1987)
  3. Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998). (10.1126/science.281.5383.1647) / Science by M Valden (1998)
  4. Hughes, M. D. et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437, 1132–1135 (2005). (10.1038/nature04190) / Nature by MD Hughes (2005)
  5. Baker, T. A., Liu, X. Y. & Friend, C. M. The mystery of gold’s chemical activity: local bonding, morphology and reactivity of atomic oxygen. Phys. Chem. Chem. Phys. 13, 34–46 (2011). (10.1039/C0CP01514H) / Phys. Chem. Chem. Phys. by TA Baker (2011)
  6. Green, I. X., Tang, W. J., Neurock, M. & Yates, J. T. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333, 736–739 (2011). (10.1126/science.1207272) / Science by IX Green (2011)
  7. Wittstock, A., Zielasek, V., Biener, J., Friend, C. M. & Bäumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327, 319–322 (2010). (10.1126/science.1183591) / Science by A Wittstock (2010)
  8. Xu, C. X. et al. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 129, 42–43 (2007). (10.1021/ja0675503) / J. Am. Chem. Soc. by CX Xu (2007)
  9. Asao, N. et al. Nanostructured materials as catalysts: Nanoporous-gold-catalyzed oxidation of organosilanes with water. Angew. Chem. Int. Edn. 49, 10093–10095 (2010). (10.1002/anie.201005138) / Angew. Chem. Int. Edn. by N Asao (2010)
  10. Zielasek, V. et al. Gold catalysts: Nanoporous gold foams. Angew. Chem. Int. Edn. 45, 8241–8244 (2006). (10.1002/anie.200602484) / Angew. Chem. Int. Edn. by V Zielasek (2006)
  11. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001). (10.1038/35068529) / Nature by J Erlebacher (2001)
  12. Biener, J. et al. Surface-chemistry-driven actuation in nanoporous gold. Nature Mater. 8, 47–51 (2009). (10.1038/nmat2335) / Nature Mater. by J Biener (2009)
  13. Snyder, J., Fujita, T., Chen, M. W. & Erlebacher, J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nature Mater. 9, 904–907 (2010). (10.1038/nmat2878) / Nature Mater. by J Snyder (2010)
  14. Lang, X. Y., Hirata, A., Fujita, T. & Chen, M. W. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotech. 6, 232–236 (2011). (10.1038/nnano.2011.13) / Nature Nanotech. by XY Lang (2011)
  15. Ding, Y. & Chen, M.W. Nanoporous metals for catalytic and optical applications. MRS Bull. 34, 569–576 (2009). (10.1557/mrs2009.156) / MRS Bull. by Y Ding (2009)
  16. Johnson, C. L. et al. Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nature Mater. 7, 120–124 (2008). (10.1038/nmat2083) / Nature Mater. by CL Johnson (2008)
  17. Fujita, T., Qian, L. H., Inoke, K., Erlebacher, J. & Chen, M. W. Three-dimensional morphology of nanoporous gold. Appl. Phys. Lett. 92, 251902 (2008). (10.1063/1.2948902) / Appl. Phys. Lett. by T Fujita (2008)
  18. Tian, N., Zhou, Z. Y., Sun, S. G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007). (10.1126/science.1140484) / Science by N Tian (2007)
  19. Foiles, S. M., Baskes, M. I. & Daw, M. S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983–7991 (1986). (10.1103/PhysRevB.33.7983) / Phys. Rev. B by SM Foiles (1986)
  20. Moskaleva, L. V. et al. Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold. Phys. Chem. Chem. Phys. 13, 4529–4539 (2011). (10.1039/c0cp02372h) / Phys. Chem. Chem. Phys. by LV Moskaleva (2011)
  21. Jiang, Q., Lu, H. M. & Zhao, M. Modelling of surface energies of elemental crystals. J. Phys. Condens. Matter 16, 521–530 (2004). (10.1088/0953-8984/16/4/001) / J. Phys. Condens. Matter by Q Jiang (2004)
  22. Hÿtch, M. J., Putaux, J. L. & Pénisson, J. M. Measurement of the displacement field of dislocations to 0.03 angstrom by electron microscopy. Nature 423, 270–273 (2003). (10.1038/nature01638) / Nature by MJ Hÿtch (2003)
  23. Galindo, P. L. et al. The Peak Pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107, 1186–1193 (2007). (10.1016/j.ultramic.2007.01.019) / Ultramicroscopy by PL Galindo (2007)
  24. Crowson, D. A., Farkas, D. & Corcoran, S. G. Mechanical stability of nanoporous metals with small ligament sizes. Scr. Mater. 61, 497–499 (2009). (10.1016/j.scriptamat.2009.05.005) / Scr. Mater. by DA Crowson (2009)
  25. Lemire, C., Meyer, R., Shaikhutdinov, S. & Freund, H-J. Do quantum size effects control CO adsorption on gold nanoparticles? Angew. Chem. Int. Edn. 43, 118–121 (2003). (10.1002/anie.200352538) / Angew. Chem. Int. Edn. by C Lemire (2003)
  26. Lopez, N. et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 223, 232–235 (2004). (10.1016/j.jcat.2004.01.001) / J. Catal. by N Lopez (2004)
  27. Molina, L. M. & Hammer, B. Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100). Phys. Rev. B 69, 155424 (2004). (10.1103/PhysRevB.69.155424) / Phys. Rev. B by LM Molina (2004)
  28. Boudart, M. Turnover rates in heterogeneous catalysis. Chem. Rev. 95, 661–666 (1995). (10.1021/cr00035a009) / Chem. Rev. by M Boudart (1995)
  29. McKenna, K. P. Gold nanoparticles under gas pressure. Phys. Chem. Chem. Phys. 11, 4145–4151 (2009). (10.1039/b821408p) / Phys. Chem. Chem. Phys. by KP McKenna (2009)
  30. Wittstock, A., Biener, J. & Baumer, M. Nanoporous gold: A new material for catalytic and sensor applications. Phy. Chem. Chem. Phys. 12, 12919–12930 (2010). (10.1039/c0cp00757a) / Phy. Chem. Chem. Phys. by A Wittstock (2010)
  31. Frenken, J. W. M. & Stoltze, P. Are vicinal metal surfaces Stable? Phys. Rev. Lett. 82, 3500–3503 (1999). (10.1103/PhysRevLett.82.3500) / Phys. Rev. Lett. by JWM Frenken (1999)
  32. Combe, N., Jensen, P. & Pimpinelli, A. Changing shapes in the nanoworld. Phys. Rev. Lett. 85, 110–113 (2000). (10.1103/PhysRevLett.85.110) / Phys. Rev. Lett. by N Combe (2000)
  33. Guan, L. et al. Relaxation and electronic states of Au(100), (110) and (111) surfaces. Solid State Commun. 149, 1561–1564 (2009). (10.1016/j.ssc.2009.05.046) / Solid State Commun. by L Guan (2009)
  34. Mavrikakis, M., Hammer, B. & Norskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998). (10.1103/PhysRevLett.81.2819) / Phys. Rev. Lett. by M Mavrikakis (1998)
  35. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chem. 2, 454–460 (2010). (10.1038/nchem.623) / Nature Chem. by P Strasser (2010)
  36. Koga, K., Ikeshoji, T. & Sugawara, K. Size- and temperature-dependent structural transitions in gold nanoparticles. Phys. Rev. Lett. 92, 115507 (2004). (10.1103/PhysRevLett.92.115507) / Phys. Rev. Lett. by K Koga (2004)
  37. Moulijn, J. A., van Diepen, A. E. & Kapteijn, F. Catalyst deactivation: Is it predictable? What to do? Appl. Catal. A 212, 3–16 (2001). (10.1016/S0926-860X(00)00842-5) / Appl. Catal. A by JA Moulijn (2001)
  38. Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002). (10.1126/science.1075094) / Science by CT Campbell (2002)
  39. Qian, L. H., Yan, X. Q., Fujita, T., Inoue, A. & Chen, M. W. Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements. Appl. Phys. Lett. 90, 153120 (2007). (10.1063/1.2722199) / Appl. Phys. Lett. by LH Qian (2007)
  40. Chen, L.Y. et al. Nanoporous PdNi bimetallic catalyst with enhanced electrocatalytic performances for electro-oxidation and oxygen reduction reactions. Adv. Funct. Mater. 21, 4364–4370 (2011). (10.1002/adfm.201101227) / Adv. Funct. Mater. by LY Chen (2011)
  41. Zhang, L. et al. Effect of residual silver on surface-enhanced raman scattering of dealloyed nanoporous gold. J. Phys. Chem. C 115, 19583–19587 (2011). (10.1021/jp205892n) / J. Phys. Chem. C by L Zhang (2011)
  42. Kresse, G. & Furthmuller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). (10.1016/0927-0256(96)00008-0) / Comput. Mater. Sci. by G Kresse (1996)
Dates
Type When
Created 13 years ago (Aug. 9, 2012, 11:41 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 4:09 p.m.)
Indexed 2 weeks, 6 days ago (Aug. 3, 2025, 12:23 a.m.)
Issued 13 years ago (Aug. 12, 2012)
Published 13 years ago (Aug. 12, 2012)
Published Online 13 years ago (Aug. 12, 2012)
Published Print 12 years, 11 months ago (Sept. 1, 2012)
Funders 0

None

@article{Fujita_2012, title={Atomic origins of the high catalytic activity of nanoporous gold}, volume={11}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3391}, DOI={10.1038/nmat3391}, number={9}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Fujita, Takeshi and Guan, Pengfei and McKenna, Keith and Lang, Xingyou and Hirata, Akihiko and Zhang, Ling and Tokunaga, Tomoharu and Arai, Shigeo and Yamamoto, Yuta and Tanaka, Nobuo and Ishikawa, Yoshifumi and Asao, Naoki and Yamamoto, Yoshinori and Erlebacher, Jonah and Chen, Mingwei}, year={2012}, month=aug, pages={775–780} }