Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Subbaraman, R., Tripkovic, D., Chang, K.-C., Strmcnik, D., Paulikas, A. P., Hirunsit, P., Chan, M., Greeley, J., Stamenkovic, V., & Markovic, N. M. (2012). Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature Materials, 11(6), 550–557.

Authors 10
  1. Ram Subbaraman (first)
  2. Dusan Tripkovic (additional)
  3. Kee-Chul Chang (additional)
  4. Dusan Strmcnik (additional)
  5. Arvydas P. Paulikas (additional)
  6. Pussana Hirunsit (additional)
  7. Maria Chan (additional)
  8. Jeff Greeley (additional)
  9. Vojislav Stamenkovic (additional)
  10. Nenad M. Markovic (additional)
References 48 Referenced 2,775
  1. Dresselhaus, M. S. & Thomas, I. L. Alternative energy technologies. Nature 414, 332–337 (2001). (10.1038/35104599) / Nature by MS Dresselhaus (2001)
  2. Gratzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001). (10.1038/35104607) / Nature by M Gratzel (2001)
  3. Schlapbach, L. & Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001). (10.1038/35104634) / Nature by L Schlapbach (2001)
  4. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001). (10.1038/35104620) / Nature by BCH Steele (2001)
  5. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). (10.1038/35104644) / Nature by JM Tarascon (2001)
  6. Lefèvre, M., Proietti, E., Jaouen, F. & Dodelet, J-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009). (10.1126/science.1170051) / Science by M Lefèvre (2009)
  7. Gasteiger, H. A. & Markovi, N. M. Just a dream—or future reality? Science 324, 48–49 (2009). (10.1126/science.1172083) / Science by HA Gasteiger (2009)
  8. Lasia, A. in Handbook of Fuel Cells: Fundamentals, Technology and Applications Vol. 2 (eds Vieistich, W., Lamm, A. & Gasteiger, H. A.) 416 (Wiley, 2003). / Handbook of Fuel Cells: Fundamentals, Technology and Applications by A Lasia (2003)
  9. Moorhouse, J. (ed.) Modern Chlor-Alkali Technology (Wiley, 2001). (10.1002/9780470999479)
  10. Hoare, J. P. The Electrochemistry of Oxygen (Interscience, 1968). / The Electrochemistry of Oxygen by JP Hoare (1968)
  11. Kinoshita, K. & Society, E. Electrochemical Oxygen Technology (Wiley, 1992). / Electrochemical Oxygen Technology by K Kinoshita (1992)
  12. Birry, L. & Lasia, A. Studies of the hydrogen evolution reaction on Raney nickel—molybdenum electrodes. J. Appl. Electrochem. 34, 735–749 (2004). (10.1023/B:JACH.0000031161.26544.6a) / J. Appl. Electrochem. by L Birry (2004)
  13. Lasia, A. & Rami, A. Kinetics of hydrogen evolution on nickel electrodes. J. Electroanal. Chem. Interfacial Electrochem. 294, 123–141 (1990). (10.1016/0022-0728(90)87140-F) / J. Electroanal. Chem. Interfacial Electrochem. by A Lasia (1990)
  14. Birss, V. I. & Damjanovic, A. Oxygen evolution at platinum electrodes in alkaline solutions. J. Electrochem. Soc. 134, 113–117 (1987). (10.1149/1.2100385) / J. Electrochem. Soc. by VI Birss (1987)
  15. Ardizzone, S., Fregonara, G. & Trasatti, S. ‘Inner’ and ‘outer’ active surface of RuO2 electrodes. Electrochim. Acta 35, 263–267 (1990). (10.1016/0013-4686(90)85068-X) / Electrochim. Acta by S Ardizzone (1990)
  16. Lyons, M. E. G. & Burke, L. D. Mechanism of oxygen reactions at porous oxide electrodes. Part 1.—Oxygen evolution at RuO2 and RuxSn1–xO2 electrodes in alkaline solution under vigorous electrolysis conditions. J. Chem. Soc. Faraday Trans. 1 83, 299–321 (1987). (10.1039/f19878300299) / J. Chem. Soc. Faraday Trans. 1 by MEG Lyons (1987)
  17. Trasatti, S. Electrodes of Conductive Metallic Oxides (Elsevier, 1980). / Electrodes of Conductive Metallic Oxides by S Trasatti (1980)
  18. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011). (10.1002/cctc.201000397) / ChemCatChem by IC Man (2011)
  19. Sergio, T. Physical electrochemistry of ceramic oxides. Electrochim. Acta 36, 225–241 (1991). (10.1016/0013-4686(91)85244-2) / Electrochim. Acta by T Sergio (1991)
  20. Lyons, M. E. G. & Brandon, M. P. A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base. J. Electroanal. Chem. 641, 119–130 (2010). (10.1016/j.jelechem.2009.11.024) / J. Electroanal. Chem. by MEG Lyons (2010)
  21. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). (10.1126/science.1141483) / Science by TF Jaramillo (2007)
  22. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008). (10.1126/science.1162018) / Science by MW Kanan (2008)
  23. Bockris, J. O. M. & Otagawa, T. The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc. 131, 290–302 (1984). (10.1149/1.2115565) / J. Electrochem. Soc. by JOM Bockris (1984)
  24. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). (10.1126/science.1212858) / Science by J Suntivich (2011)
  25. Russell, A. E. & Rose, A. X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem. Rev. 104, 4613–4636 (2004). (10.1021/cr020708r) / Chem. Rev. by AE Russell (2004)
  26. Totir, D., Mo, Y., Kim, S., Antonio, M. R. & Scherson, D. A. In situ Co K-edge X-ray absorption fine structure of cobalt hydroxide film electrodes in alkaline solutions. J. Electrochem. Soc. 147, 4594–4597 (2000). (10.1149/1.1394107) / J. Electrochem. Soc. by D Totir (2000)
  27. Pourbaix, M. in Atlas of Electrochemical Equilibria in Aqueous Solutions (ed. Pourbaix, M.) 644 (NACE, 1974). / Atlas of Electrochemical Equilibria in Aqueous Solutions by M Pourbaix (1974)
  28. Campbell, C. T. Bimetallic surface chemistry. Annu. Rev. Phys. Chem. 41, 775–837 (1990). (10.1146/annurev.pc.41.100190.004015) / Annu. Rev. Phys. Chem. by CT Campbell (1990)
  29. Clavilier, J., Faure, R., Guinet, G. & Durand, R. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J. Electroanal. Chem. Interfacial Electrochem. 107, 205–209 (1979). (10.1016/S0022-0728(79)80022-4) / J. Electroanal. Chem. Interfacial Electrochem. by J Clavilier (1979)
  30. Markovi, N. M. & Ross, P. N. Jr Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002). (10.1016/S0167-5729(01)00022-X) / Surf. Sci. Rep. by NM Markovi (2002)
  31. Strmcnik, D. et al. Effects of Li+, K+, and Ba2+ cations on the ORR at model and high surface area Pt and Au surfaces in alkaline solutions. J. Phys. Chem. Lett. 2, 2733–2736 (2011). (10.1021/jz201215u) / J. Phys. Chem. Lett. by D Strmcnik (2011)
  32. Ahmed, M. et al. Unprecedented structural sensitivity toward average terrace width: Nafion adsorption at Pt{hkl} electrodes. J. Phys. Chem. C 115, 17020–17027 (2011). (10.1021/jp2044042) / J. Phys. Chem. C by M Ahmed (2011)
  33. Van der Niet, M. J. T. C., den Dunnen, A., Juurlink, L. B. F. & Koper, M. T. M. Co-adsorption of O and H2O on nanostructured platinum surfaces: Does OH form at steps? Angew. Chem. Int. Ed. 122, 6572–6575 (2010). (10.1002/anie.201002124) / Angew. Chem. Int. Ed. by MJTC Van der Niet (2010)
  34. Marković, N. M. et al. Effect of temperature on surface processes at the Pt(111)-liquid interface:? Hydrogen adsorption, oxide formation, and CO oxidation? J. Phys. Chem. B 103, 8568–8577 (1999). (10.1021/jp991826u) / J. Phys. Chem. B by NM Marković (1999)
  35. Strmcnik, D. S. et al. Unique activity of platinum adislands in the CO electrooxidation reaction. J. Am. Chem. Soc. 130, 15332–15339 (2008). (10.1021/ja8032185) / J. Am. Chem. Soc. by DS Strmcnik (2008)
  36. Schmidt, T. J., Ross, P. N. & Markovic, N. M. Temperature-dependent surface electrochemistry on Pt single crystals in alkaline electrolyte: Part 1: CO oxidation. J. Phys. Chem. B 105, 12082–12086 (2001). (10.1021/jp0124037) / J. Phys. Chem. B by TJ Schmidt (2001)
  37. Markovic, N. R. & Ross, P. N. New electrocatalysts for fuel cells from model surfaces to commercial catalysts. Cattech 4, 110–126 (2000). (10.1023/A:1011963731898) / Cattech by NR Markovic (2000)
  38. Rossmeisl, J., Qu, Z. W., Zhu, H., Kroes, G. J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007). (10.1016/j.jelechem.2006.11.008) / J. Electroanal. Chem. by J Rossmeisl (2007)
  39. Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nature Chem. 1, 37–46 (2009). (10.1038/nchem.121) / Nature Chem. by JK Norskov (2009)
  40. Conway, B. E. & Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571–3594 (2002). (10.1016/S0013-4686(02)00329-8) / Electrochim. Acta by BE Conway (2002)
  41. Markovic, N. M., Sarraf, S. T., Gasteiger, H. A. & Ross, P. N. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J. Chem. Soc. Faraday Trans. 92, 3719–3725 (1996). (10.1039/FT9969203719) / J. Chem. Soc. Faraday Trans. by NM Markovic (1996)
  42. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater. 5, 909–913 (2006). (10.1038/nmat1752) / Nature Mater. by J Greeley (2006)
  43. Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+/Ni(OH)2/Pt interfaces. Science 334, 1256–1260 (2011). (10.1126/science.1211934) / Science by R Subbaraman (2011)
  44. Henrich, V. E. & Cox, P. A. The Surface Science of Metal Oxides (Cambridge Univ. Press, 1994). / The Surface Science of Metal Oxides by VE Henrich (1994)
  45. Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1–308 (2002). (10.1016/S0167-5729(01)00020-6) / Surf. Sci. Rep. by MA Henderson (2002)
  46. Bligaard, T. et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004). (10.1016/j.jcat.2004.02.034) / J. Catal. by T Bligaard (2004)
  47. Thiel, P. A. & Madey, T. E. The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 7, 211–385 (1987). (10.1016/0167-5729(87)90001-X) / Surf. Sci. Rep. by PA Thiel (1987)
  48. Kim, M-S. & Kim, K-B. A study on the phase transformation of electrochemically precipitated nickel hydroxides using an electrochemical quartz crystal microbalance. J. Electrochem. Soc. 145, 507–511 (1998). (10.1149/1.1838294) / J. Electrochem. Soc. by M-S Kim (1998)
Dates
Type When
Created 13 years, 3 months ago (May 3, 2012, 11:58 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 4:09 p.m.)
Indexed 26 minutes ago (Aug. 28, 2025, 10:30 p.m.)
Issued 13 years, 3 months ago (May 6, 2012)
Published 13 years, 3 months ago (May 6, 2012)
Published Online 13 years, 3 months ago (May 6, 2012)
Published Print 13 years, 2 months ago (June 1, 2012)
Funders 0

None

@article{Subbaraman_2012, title={Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts}, volume={11}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3313}, DOI={10.1038/nmat3313}, number={6}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Subbaraman, Ram and Tripkovic, Dusan and Chang, Kee-Chul and Strmcnik, Dusan and Paulikas, Arvydas P. and Hirunsit, Pussana and Chan, Maria and Greeley, Jeff and Stamenkovic, Vojislav and Markovic, Nenad M.}, year={2012}, month=may, pages={550–557} }