Crossref
journal-article
Springer Science and Business Media LLC
Nature Materials (297)
References
55
Referenced
180
-
Mishima, O. & Stanley, H. E. The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).
(
10.1038/24540
) / Nature by O Mishima (1998) -
Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).
(
10.1126/science.267.5206.1924
) / Science by CA Angell (1995) -
Angell, C. A. Insights into phases of liquid water from study of its unusual glass-forming properties. Science 319, 582–587 (2008).
(
10.1126/science.1131939
) / Science by CA Angell (2008) -
Debenedetti, P. G. Supercooled and glassy water. J. Phys. Condens. Matter 15, R1669–R1726 (2003).
(
10.1088/0953-8984/15/45/R01
) / J. Phys. Condens. Matter by PG Debenedetti (2003) -
Tanaka, H. Simple view of waterlike anomalies of atomic liquids with directional bonding. Phys. Rev. B 66, 064202 (2002).
(
10.1103/PhysRevB.66.064202
) / Phys. Rev. B by H Tanaka (2002) -
Mishima, O., Calvert, L. D. & Whalley, E. An apparent first-order transition between two amorphous phases of ice induced by pressure. Nature 314, 76–78 (1985).
(
10.1038/314076a0
) / Nature by O Mishima (1985) -
Sastry, S., Debenedetti, P. G., Sciortino, F. & Stanley, H. E. Singularity-free interpretation of the thermodynamics of supercooled water. Phys. Rev. E 53, 6144–6154 (1996).
(
10.1103/PhysRevE.53.6144
) / Phys. Rev. E by S Sastry (1996) -
Tanaka, H. Thermodynamic anomaly and polyamorphism of water. Europhys. Lett. 50, 340–346 (2000).
(
10.1209/epl/i2000-00276-4
) / Europhys. Lett. by H Tanaka (2000) -
Koza, M. M., Schober, H., Fischer, H. E., Hansen, T. & Fujara, F. Kinetics of the high- to low-density amorphous water transition. J. Phys. Condens. Matter 15, 321–332 (2003).
(
10.1088/0953-8984/15/3/301
) / J. Phys. Condens. Matter by MM Koza (2003) -
Poole, P. H., Sciortino, F., Essmann, U. & Stanley, H. E. Phase behaviour of metastable water. Nature 360, 324–328 (1992).
(
10.1038/360324a0
) / Nature by PH Poole (1992) -
Xu, L. et al. Relation between the widom line and the dynamic crossover in systems with a liquid–liquid phase transition. Proc. Natl Acad. Sci. USA 102, 16558–16562 (2005).
(
10.1073/pnas.0507870102
) / Proc. Natl Acad. Sci. USA by L Xu (2005) -
Tanaka, H. A new scenario of the apparent fragile-to-strong transition in tetrahedral liquids: water as an example. J. Phys. Condens. Matter 15, L703–L711 (2003).
(
10.1088/0953-8984/15/45/L03
) / J. Phys. Condens. Matter by H Tanaka (2003) -
Poole, P. H., Grande, T., Angell, C. A. & McMillan, P. F. Polymorphic phase transitions in liquids and glasses. Science 275, 322–324 (1997).
(
10.1126/science.275.5298.322
) / Science by PH Poole (1997) -
Tanaka, H. General view of a liquid–liquid phase. Phys. Rev. E 62, 6968–6976 (2000).
(
10.1103/PhysRevE.62.6968
) / Phys. Rev. E by H Tanaka (2000) -
Katayama, Y., Mizutani, T., Utsumi, W., Shimomura, O. & Yamakata, M. A first-order liquid–liquid transition in phosphorus. Nature 403, 170–173 (2000).
(
10.1038/35003143
) / Nature by Y Katayama (2000) -
Sastry, S. & Angell, C. A. Liquid–liquid phase transition in supercooled silicon. Nature Mater. 2, 739–743 (2003).
(
10.1038/nmat994
) / Nature Mater. by S Sastry (2003) -
Vasisht, V. V., Saw, S. & Sastry, S. Liquid–liquid critical point in supercooled silicon. Nature Phys. 7, 549–553 (2011).
(
10.1038/nphys1993
) / Nature Phys. by VV Vasisht (2011) -
Aasland, S. & McMillan, P. F. Density-driven liquid–liquid phase-separation in the system Al2O3-Y2O3 . Nature 369, 633–639 (1994).
(
10.1038/369633a0
) / Nature by S Aasland (1994) -
Greaves, G. N. et al. Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts. Science 322, 566–570 (2008).
(
10.1126/science.1160766
) / Science by GN Greaves (2008) -
Cohen, I. et al. A low temperature amorphous phase in fragile glass-forming substance. J. Phys. Chem 100, 8518–8526 (1996).
(
10.1021/jp953785h
) / J. Phys. Chem by I Cohen (1996) -
Tanaka, H., Kurita, R. & Mataki, H. Liquid–liquid transition in the molecular liquid triphenyl phosphite. Phys. Rev. Lett. 92, 025701 (2004).
(
10.1103/PhysRevLett.92.025701
) / Phys. Rev. Lett. by H Tanaka (2004) -
Kurita, R. & Tanaka, H. Critical-like phenomena associated with liquid–liquid transition in a molecular liquid. Science 306, 845–848 (2004).
(
10.1126/science.1103073
) / Science by R Kurita (2004) -
Kurita, R. & Tanaka, H. On the abundance and general nature of the liquid–liquid phase transition in molecular systems. J. Phys. Condens. Matter 17, L293–L302 (2005).
(
10.1088/0953-8984/17/27/L01
) / J. Phys. Condens. Matter by R Kurita (2005) -
Kurita, R., Murata, K. & Tanaka, H. Control of fluidity and miscibility of a binary liquid mixture by the liquid–liquid transition. Nature Mater. 7, 647–652 (2008).
(
10.1038/nmat2225
) / Nature Mater. by R Kurita (2008) -
Murata, K. & Tanaka, H. Surface-wetting effects on the liquid–liquid transition of a single-component molecular liquid. Nature Commun. 1, 16 (2010).
(
10.1038/ncomms1015
) / Nature Commun. by K Murata (2010) -
Hedoux, A., Guinet, Y., Descamps, M. & Benabou, A. Raman scattering investigation of the glaciation process in triphenyl phosphite. J. Phys. Chem. B 104, 11774–11780 (2000).
(
10.1021/jp001776p
) / J. Phys. Chem. B by A Hedoux (2000) -
Liu, L., Chen, S. H., Faraone, A., Yen, C. W. & Mou, C. Y. Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys. Rev. Lett. 95, 117802 (2005).
(
10.1103/PhysRevLett.95.117802
) / Phys. Rev. Lett. by L Liu (2005) -
Mallamace, F. et al. Transport properties of supercooled confined water. Eur. Phys. J. Special Topics 161, 19–33 (1008).
(
10.1140/epjst/e2008-00747-2
) / Eur. Phys. J. Special Topics by F Mallamace (1008) -
Doster, W. et al. Dynamical transition of protein-hydration water. Phys. Rev. Lett. 104, 098101 (2010).
(
10.1103/PhysRevLett.104.098101
) / Phys. Rev. Lett. by W Doster (2010) -
Mancinelli, R. The effect of confinement on water structure. J. Phys. Condens. Matter 22, 404213 (2010).
(
10.1088/0953-8984/22/40/404213
) / J. Phys. Condens. Matter by R Mancinelli (2010) -
Morineau, D. & Alba-Simionesco, C. Does molecular self-association survive in nanochannels? J. Phys. Chem. Lett. 1, 1155–1159 (2010).
(
10.1021/jz100132d
) / J. Phys. Chem. Lett. by D Morineau (2010) -
Findenegg, G. H., Jähnert, S., Akcakayiran, D. & Schreiber, A. Freezing and melting of water confined in silica nanopores. ChemPhysChem. 9, 2651–2659 (2008).
(
10.1002/cphc.200800616
) / ChemPhysChem. by GH Findenegg (2008) -
Davis-Searles, P. R., Saunders, A. J., Erie, D. A., Winzor, D. J. & Pielak, G. J. Interpreting the effects of small uncharged solutes on protein-folding equilibria. Annu. Rev. Biophys. Biomol. Struct. 30, 271–306 (2001).
(
10.1146/annurev.biophys.30.1.271
) / Annu. Rev. Biophys. Biomol. Struct. by PR Davis-Searles (2001) -
Chatterjee, S. & Debenedetti, P. G. Fluid-phase behavior of binary mixtures in which one component can have two critical point. J. Chem. Phys. 124, 154503 (2006).
(
10.1063/1.2188402
) / J. Chem. Phys. by S Chatterjee (2006) -
Mishima, O. Application of polyamorphism in water to spontaneous crystallization of emulsified LiCl–H2O solution. J. Chem. Phys. 123, 154506 (2005).
(
10.1063/1.2085144
) / J. Chem. Phys. by O Mishima (2005) -
Mishima, O. Phase separation in dilute LiCl–H2O solution related to the polyamorphism of liquid water. J. Chem. Phys. 126, 244507 (2007).
(
10.1063/1.2743434
) / J. Chem. Phys. by O Mishima (2007) -
Le, L. & Molinero, V. Nanophase segregation in supercooled aqueous solutions and their glasses driven by the polyamorphism of water. J. Phys. Chem. A 115, 5900–5907 (2011).
(
10.1021/jp1102065
) / J. Phys. Chem. A by L Le (2011) -
Angell, C. A., Borick, S. & Grabow, M. Glass transition and first order liquid-metal-to-semiconductor transitions in 4-5-6 covalent systems. J. Non-Cryst. Solids 205–207, 463–471 (1996).
(
10.1016/S0022-3093(96)00261-X
) / J. Non-Cryst. Solids by CA Angell (1996) -
Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).
(
10.1038/19042
) / Nature by K Ito (1999) -
Kurita, R. & Tanaka, H. Control of the fragility of a glass-forming liquid using the liquid–liquid phase transition. Phys. Rev. Lett. 95, 065701 (2005).
(
10.1103/PhysRevLett.95.065701
) / Phys. Rev. Lett. by R Kurita (2005) -
Kurita, R. & Tanaka, H. Kinetics of the liquid–liquid transition of triphenyl phosphite. Phys. Rev. B 73, 104202 (2006).
(
10.1103/PhysRevB.73.104202
) / Phys. Rev. B by R Kurita (2006) -
Suzuki, Y. & Tominaga, Y. Polarized Raman spectroscopic study of relaxed high density amorphous ices under pressure. J. Chem. Phys. 133, 164508 (2010).
(
10.1063/1.3505045
) / J. Chem. Phys. by Y Suzuki (2010) -
Mudalige, A. & Pemberton, J. E. Raman spectroscopy of glycerol/D2O solutions. Vib. Spectrosc. 45, 27–35 (2007).
(
10.1016/j.vibspec.2007.04.002
) / Vib. Spectrosc. by A Mudalige (2007) -
Hansen, T. C., Koza, M. M. & Kuhs, W. F. Formation and annealing of cubic ice: I. Modelling of stacking fault. J. Phys. Condens. Matter 20, 285104 (2008).
(
10.1088/0953-8984/20/28/285104
) / J. Phys. Condens. Matter by TC Hansen (2008) -
Johari, G. P. Water’s size-dependent freezing to cubic ice. J. Chem. Phys. 122, 194504 (2005).
(
10.1063/1.1900723
) / J. Chem. Phys. by GP Johari (2005) -
Jenniskens, P. & Blake, D. F. Crystallization of amorphous water ice in the solar system. Astrophys. J. 473, 1104–1113 (1996).
(
10.1086/178220
) / Astrophys. J. by P Jenniskens (1996) -
Moore, E. B. & Molinero, V. Ice crystallization in water’s ‘no-man’s land’. J. Chem. Phys. 132, 244504 (2010).
(
10.1063/1.3451112
) / J. Chem. Phys. by EB Moore (2010) -
Kivelson, D. & Tarjus, G. H2O below 277 K: A novel picture. J. Phys. Chem. B 105, 6620–6627 (2001).
(
10.1021/jp010104b
) / J. Phys. Chem. B by D Kivelson (2001) -
Kobayashi, M. & Tanaka, H. Possible link of the V-shaped phase diagram to the glass-forming ability and fragility in a water-salt mixture. Phys. Rev. Lett. 106, 125703 (2011).
(
10.1103/PhysRevLett.106.125703
) / Phys. Rev. Lett. by M Kobayashi (2011) -
Mishima, O. Volume of supercooled water under pressure and liquid–liquid critical point. J. Chem. Phys. 133, 144503 (2010).
(
10.1063/1.3487999
) / J. Chem. Phys. by O Mishima (2010) -
Miyata, K. & Kanno, H. Supercooling behavior of aqueous solutions of alcohols and saccharides. J. Mol. Liq. 119, 189–193 (2005).
(
10.1016/j.molliq.2004.10.026
) / J. Mol. Liq. by K Miyata (2005) - Rasmussen, D. H. & MacKenzie, A. P. Water Structure at the Water-Polymer Interface (Plenum, 1972). / Water Structure at the Water-Polymer Interface by DH Rasmussen (1972)
-
Olsen, N. B. Scaling of β-relaxation in the equilibrium liquid state of sorbitol. J. Non-Cryst. Solids 235–237, 399–405 (1998).
(
10.1016/S0022-3093(98)00599-7
) / J. Non-Cryst. Solids by NB Olsen (1998) -
Dyre, J. C. & Olsen, N. B. Minimal model for beta relaxation in viscous liquids. Phys. Rev. Lett. 91, 155703 (2003).
(
10.1103/PhysRevLett.91.155703
) / Phys. Rev. Lett. by JC Dyre (2003) - Lane, L. B. Freezing points of glycerol and its aqueous solutions. Ind. Eng. Chem. 17, 924 (1925). / Ind. Eng. Chem. by LB Lane (1925)
Dates
Type | When |
---|---|
Created | 13 years, 5 months ago (March 16, 2012, 2:55 a.m.) |
Deposited | 3 years, 1 month ago (July 6, 2022, 2:20 p.m.) |
Indexed | 4 days, 14 hours ago (Aug. 21, 2025, 1:08 p.m.) |
Issued | 13 years, 5 months ago (March 18, 2012) |
Published | 13 years, 5 months ago (March 18, 2012) |
Published Online | 13 years, 5 months ago (March 18, 2012) |
Published Print | 13 years, 3 months ago (May 1, 2012) |
@article{Murata_2012, title={Liquid–liquid transition without macroscopic phase separation in a water–glycerol mixture}, volume={11}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3271}, DOI={10.1038/nmat3271}, number={5}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Murata, Ken-ichiro and Tanaka, Hajime}, year={2012}, month=mar, pages={436–443} }