Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Khaliullin, R. Z., Eshet, H., Kühne, T. D., Behler, J., & Parrinello, M. (2011). Nucleation mechanism for the direct graphite-to-diamond phase transition. Nature Materials, 10(9), 693–697.

Authors 5
  1. Rustam Z. Khaliullin (first)
  2. Hagai Eshet (additional)
  3. Thomas D. Kühne (additional)
  4. Jörg Behler (additional)
  5. Michele Parrinello (additional)
References 31 Referenced 314
  1. Bundy, F. P. Direct conversion of graphite to diamond in static pressure apparatus. J. Chem. Phys. 38, 631–643 (1963). (10.1063/1.1733716) / J. Chem. Phys. by FP Bundy (1963)
  2. Bundy, F. P. & Kasper, J. S. Hexagonal diamond—a new form of carbon. J. Chem. Phys. 46, 3437–3446 (1967). (10.1063/1.1841236) / J. Chem. Phys. by FP Bundy (1967)
  3. Bundy, F. P. et al. The pressure–temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34, 141–153 (1996). (10.1016/0008-6223(96)00170-4) / Carbon by FP Bundy (1996)
  4. Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. & Sumiya, H. Ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003). (10.1038/421599b) / Nature by T Irifune (2003)
  5. Britun, V. F., Kurdyumov, A. V. & Petrusha, I. A. Diffusionless nucleation of lonsdaleite and diamond in hexagonal graphite under static compression. Powder Metall. Met. Ceram. 43, 87–93 (2004). (10.1023/B:PMMC.0000028276.63784.8e) / Powder Metall. Met. Ceram. by VF Britun (2004)
  6. Sumiya, H., Yusa, H., Inoue, T., Ofuji, H. & Irifune, T. Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature. High Pressure Res. 26, 63–69 (2006). (10.1080/08957950600765863) / High Pressure Res. by H Sumiya (2006)
  7. Ohfuji, H. & Kuroki, K. Origin of unique microstructures in nano-polycrystalline diamond synthesized by direct conversion of graphite at static high pressure. J. Mineral. Petrol. Sci. 104, 307–312 (2009). (10.2465/jmps.090622i) / J. Mineral. Petrol. Sci. by H Ohfuji (2009)
  8. Fahy, S., Louie, S. G. & Cohen, M. L. Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond. Phys. Rev. B 34, 1191–1199 (1986). (10.1103/PhysRevB.34.1191) / Phys. Rev. B by S Fahy (1986)
  9. Fahy, S., Louie, S. G. & Cohen, M. L. Theoretical total-energy study of the transformation of graphite into hexagonal diamond. Phys. Rev. B 35, 7623–7626 (1987). (10.1103/PhysRevB.35.7623) / Phys. Rev. B by S Fahy (1987)
  10. Tateyama, Y., Ogitsu, T., Kusakabe, K. & Tsuneyuki, S. Constant-pressure first-principles studies on the transition states of the graphite–diamond transformation. Phys. Rev. B 54, 14994–15001 (1996). (10.1103/PhysRevB.54.14994) / Phys. Rev. B by Y Tateyama (1996)
  11. Scandolo, S., Bernasconi, M., Chiarotti, G. L., Focher, P. & Tosatti, E. Pressure-induced transformation path of graphite to diamond. Phys. Rev. Lett. 74, 4015–4018 (1995). (10.1103/PhysRevLett.74.4015) / Phys. Rev. Lett. by S Scandolo (1995)
  12. Zipoli, F., Bernasconi, M. & Martonak, R. Constant pressure reactive molecular dynamics simulations of phase transitions under pressure: The graphite to diamond conversion revisited. Eur. Phys. J. B 39, 41–47 (2004). (10.1140/epjb/e2004-00168-y) / Eur. Phys. J. B by F Zipoli (2004)
  13. Khaliullin, R. Z., Eshet, H., Kühne, T. D., Behler, J. & Parrinello, M. Graphite–diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface. Phys. Rev. B 81, 100103 (2010). (10.1103/PhysRevB.81.100103) / Phys. Rev. B by RZ Khaliullin (2010)
  14. Bundy, F. P., Strong, H. M., Bovenkerk, H. P. & Wentorf, R. H. Diamond–graphite equilibrium line from growth and graphitization of diamond. J. Chem. Phys. 35, 383–391 (1961). (10.1063/1.1731938) / J. Chem. Phys. by FP Bundy (1961)
  15. Bartok, A. P., Payne, M. C., Kondor, R. & Csanyi, G. Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010). (10.1103/PhysRevLett.104.136403) / Phys. Rev. Lett. by AP Bartok (2010)
  16. Mundy, C. J. et al. Ultrafast transformation of graphite to diamond: An ab initio study of graphite under shock compression. J. Chem. Phys. 128, 184701 (2008). (10.1063/1.2913201) / J. Chem. Phys. by CJ Mundy (2008)
  17. Erskine, D. J. & Nellis, W. J. Shock-induced martensitic phase-transformation of oriented graphite to diamond. Nature 349, 317–319 (1991). (10.1038/349317a0) / Nature by DJ Erskine (1991)
  18. Erskine, D. J. & Nellis, W. J. Shock-induced martensitic-transformation of highly oriented graphite to diamond. J. Appl. Phys. 71, 4882–4886 (1992). (10.1063/1.350633) / J. Appl. Phys. by DJ Erskine (1992)
  19. Vanderbilt, D. & Louie, S. G. Total energies of diamond (111) surface reconstructions by a linear combination of atomic orbitals method. Phys. Rev. B 30, 6118–6130 (1984). (10.1103/PhysRevB.30.6118) / Phys. Rev. B by D Vanderbilt (1984)
  20. Zerilli, F. J. & Jones, H. D. Surface energy and the size of diamond crystals. AIP Conf. Proc. 370, 163–166 (1996). (10.1063/1.50738) / AIP Conf. Proc. by FJ Zerilli (1996)
  21. Bradley, R. S. Effect of pressure on rate of solid reactions, with special reference to diamond synthesis. J. Inorg. Nucl. Chem. 33, 1969–1973 (1971). (10.1016/0022-1902(71)80557-2) / J. Inorg. Nucl. Chem. by RS Bradley (1971)
  22. Deryagin, B. V. & Fedoseev, D. V. Phase-transitions and nucleation in diamond and graphite. Bull. Acad. Sci. USSR Div. Chem. Sci. 28, 1106–1109 (1979). (10.1007/BF00947364) / Bull. Acad. Sci. USSR Div. Chem. Sci. by BV Deryagin (1979)
  23. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007). (10.1103/PhysRevLett.98.146401) / Phys. Rev. Lett. by J Behler (2007)
  24. Eshet, H., Khaliullin, R. Z., Kühne, T. D., Behler, J. & Parrinello, M. Ab initio quality neural-network potential for sodium. Phys. Rev. B 81, 184107 (2010). (10.1103/PhysRevB.81.184107) / Phys. Rev. B by H Eshet (2010)
  25. Yagi, T., Utsumi, W., Yamakata, M., Kikegawa, T. & Shimomura, O. High-pressure in situ X-ray-diffraction study of the phase-transformation from graphite to hexagonal diamond at room-temperature. Phys. Rev. B 46, 6031–6039 (1992). (10.1103/PhysRevB.46.6031) / Phys. Rev. B by T Yagi (1992)
  26. Chu, Y. A., Moran, B., Reid, A. C. E. & Olson, G. B. A model for nonclassical nucleation of solid–solid structural phase transformations. Metall. Mater. Trans. A 31, 1321–1331 (2000). (10.1007/s11661-000-0251-7) / Metall. Mater. Trans. A by YA Chu (2000)
  27. Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957). (10.1098/rspa.1957.0133) / Proc. R. Soc. Lond. A by JD Eshelby (1957)
  28. Le Guillou, C., Brunet, F., Irifune, T., Ohfuji, H. & Rouzaud, J. N. Nanodiamond nucleation below 2273 K at 15 GPa from carbons with different structural organizations. Carbon 45, 636–648 (2007). (10.1016/j.carbon.2006.10.005) / Carbon by C Le Guillou (2007)
  29. Suarez-Martinez, I., Savini, G., Haffenden, G., Campanera, J. M. & Heggie, M. I. Dislocations of Burgers vector c/2 in graphite. Phys. Status Solidi C 4, 2958–2962 (2007). (10.1002/pssc.200675445) / Phys. Status Solidi C by I Suarez-Martinez (2007)
  30. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  31. Von Lilienfeld, O. A., Tavernelli, I., Rothlisberger, U. & Sebastiani, D. Optimization of effective atom centered potentials for London dispersion forces in density functional theory. Phys. Rev. Lett. 93, 153004 (2004). (10.1103/PhysRevLett.93.153004) / Phys. Rev. Lett. by OA Von Lilienfeld (2004)
Dates
Type When
Created 14 years ago (July 24, 2011, 1:20 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 4:03 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 5, 2025, 9:01 a.m.)
Issued 14 years ago (July 24, 2011)
Published 14 years ago (July 24, 2011)
Published Online 14 years ago (July 24, 2011)
Published Print 13 years, 11 months ago (Sept. 1, 2011)
Funders 0

None

@article{Khaliullin_2011, title={Nucleation mechanism for the direct graphite-to-diamond phase transition}, volume={10}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3078}, DOI={10.1038/nmat3078}, number={9}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Khaliullin, Rustam Z. and Eshet, Hagai and Kühne, Thomas D. and Behler, Jörg and Parrinello, Michele}, year={2011}, month=jul, pages={693–697} }