Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

von Maltzahn, G., Park, J.-H., Lin, K. Y., Singh, N., Schwöppe, C., Mesters, R., Berdel, W. E., Ruoslahti, E., Sailor, M. J., & Bhatia, S. N. (2011). Nanoparticles that communicate in vivo to amplify tumour targeting. Nature Materials, 10(7), 545–552.

Authors 10
  1. Geoffrey von Maltzahn (first)
  2. Ji-Ho Park (additional)
  3. Kevin Y. Lin (additional)
  4. Neetu Singh (additional)
  5. Christian Schwöppe (additional)
  6. Rolf Mesters (additional)
  7. Wolfgang E. Berdel (additional)
  8. Erkki Ruoslahti (additional)
  9. Michael J. Sailor (additional)
  10. Sangeeta N. Bhatia (additional)
References 38 Referenced 452
  1. Chan, W. C. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998). (10.1126/science.281.5385.2016) / Science by WC Chan (1998)
  2. Park, J. H. et al. Magnetic iron oxide nanoworms for tumour targeting and imaging. Adv. Mater. 20, 1630–1630 (2008). (10.1002/adma.200800004) / Adv. Mater. by JH Park (2008)
  3. Xia, Y. N. & Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 30, 338–344 (2005). (10.1557/mrs2005.96) / MRS Bull. by YN Xia (2005)
  4. Gref, R. et al. Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994). (10.1126/science.8128245) / Science by R Gref (1994)
  5. Sengupta, S. et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568–572 (2005). (10.1038/nature03794) / Nature by S Sengupta (2005)
  6. Park, J. H., von Maltzahn, G., Ruoslahti, E., Bhatia, S. N. & Sailor, M. J. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew. Chem. Int. Ed. 47, 7284–7288 (2008). (10.1002/anie.200801810) / Angew. Chem. Int. Ed. by JH Park (2008)
  7. Litzinger, D. C. & Huang, L. Phosphatidylethanolamine liposomes—drug delivery, gene-transfer and immunodiagnostic applications. Biochim. Biophys. Acta 1113, 201–227 (1992). (10.1016/0304-4157(92)90039-D) / Biochim. Biophys. Acta by DC Litzinger (1992)
  8. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nature Biotechnol. 26, 561–569 (2008). (10.1038/nbt1402) / Nature Biotechnol. by A Akinc (2008)
  9. Anderson, D. G., Lynn, D. M. & Langer, R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed. 42, 3153–3158 (2003). (10.1002/anie.200351244) / Angew. Chem. Int. Ed. by DG Anderson (2003)
  10. Leserman, L. D., Barbet, J., Kourilsky, F. & Weinstein, J. N. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature 288, 602–604 (1980). (10.1038/288602a0) / Nature by LD Leserman (1980)
  11. Heath, T. D., Fraley, R. T. & Papahdjopoulos, D. Antibody targeting of liposomes: Cell specificity obtained by conjugation of F(ab′)2 to vesicle surface. Science 210, 539–541 (1980). (10.1126/science.7423203) / Science by TD Heath (1980)
  12. Akerman, M. E., Chan, W. C. W., Laakkonen, P., Bhatia, S. N. & Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl Acad. Sci. USA 99, 12617–12621 (2002). (10.1073/pnas.152463399) / Proc. Natl Acad. Sci. USA by ME Akerman (2002)
  13. Hood, J. D. et al. Tumour regression by targeted gene delivery to the neovasculature. Science 296, 2404–2407 (2002). (10.1126/science.1070200) / Science by JD Hood (2002)
  14. Farokhzad, O. C. et al. Nanoparticle–aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res. 64, 7668–7672 (2004). (10.1158/0008-5472.CAN-04-2550) / Cancer Res. by OC Farokhzad (2004)
  15. Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T. & Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nature Biotechnol. 23, 1418–1423 (2005). (10.1038/nbt1159) / Nature Biotechnol. by R Weissleder (2005)
  16. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotech. 2, 249–255 (2007). (10.1038/nnano.2007.70) / Nature Nanotech. by Y Geng (2007)
  17. Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53, 283–318 (2001). (10.1016/S0031-6997(24)01494-7) / Pharmacol. Rev. by SM Moghimi (2001)
  18. Moghimi, S. M. & Szebeni, J. Stealth liposomes and long circulating nanoparticles: Critical issues in pharmacokinetics, opsonization and protein-binding properties. Progr. Lipid Res. 42, 463–478 (2003). (10.1016/S0163-7827(03)00033-X) / Progr. Lipid Res. by SM Moghimi (2003)
  19. Murphy, C. J. et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005). (10.1021/jp0516846) / J. Phys. Chem. B by CJ Murphy (2005)
  20. Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006). (10.1021/jp057170o) / J. Phys. Chem. B by PK Jain (2006)
  21. Hu, M. et al. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006). (10.1039/b517615h) / Chem. Soc. Rev. by M Hu (2006)
  22. Kong, G., Braun, R. D. & Dewhirst, M. W. Hyperthermia enables tumour-specific nanoparticle delivery: Effect of particle size. Cancer Res. 60, 4440–4445 (2000). / Cancer Res. by G Kong (2000)
  23. von Maltzahn, G. et al. Computationally-guided photothermal tumour therapy using long-circulating gold nanorod antennas. Cancer Res. 69, 3892–3900 (2009). (10.1158/0008-5472.CAN-08-4242) / Cancer Res. by G von Maltzahn (2009)
  24. Hashizume, H. et al. Openings between defective endothelial cells explain tumour vessel leakiness. Am. J. Pathol. 156, 1363–1380 (2000). (10.1016/S0002-9440(10)65006-7) / Am. J. Pathol. by H Hashizume (2000)
  25. Maeda, H. The enhanced permeability and retention (EPR) effect in tumour vasculature: The key role of tumour-selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189–207 (2001). (10.1016/S0065-2571(00)00013-3) / Adv. Enzyme Regul. by H Maeda (2001)
  26. Weissleder, R. A clearer vision for in vivo imaging. Nature Biotechnol. 19, 316–317 (2001). (10.1038/86684) / Nature Biotechnol. by R Weissleder (2001)
  27. Kessler, T. et al. Inhibition of tumour growth by RGD peptide-directed delivery of truncated tissue factor to the tumour vasculature. Clin. Cancer Res. 11, 6317–6324 (2005). (10.1158/1078-0432.CCR-05-0389) / Clin. Cancer Res. by T Kessler (2005)
  28. Bieker, R. et al. Infarction of tumour vessels by NGR-peptide directed targeting of tissue factor. Experimental results and first-in-man experience. Blood 113, 5019–5027 (2009). (10.1182/blood-2008-04-150318) / Blood by R Bieker (2009)
  29. Huang, X. M. et al. Tumour infarction in mice by antibody-directed targeting of tissue factor to tumour vasculature. Science 275, 547–550 (1997). (10.1126/science.275.5299.547) / Science by XM Huang (1997)
  30. El-Sheikh, A., Borgstrom, P., Bhattacharjee, G., Belting, M. & Edgington, T. S. A selective tumour microvasculature thrombogen that targets a novel receptor complex in the tumour angiogenic microenvironment. Cancer Res. 65, 11109–11117 (2005). (10.1158/0008-5472.CAN-05-2733) / Cancer Res. by A El-Sheikh (2005)
  31. Persigehl, T. et al. Antiangiogenic tumour treatment: Early noninvasive monitoring with USPIO-enhanced MR imaging in mice. Radiology 244, 449–456 (2007). (10.1148/radiol.2442060371) / Radiology by T Persigehl (2007)
  32. Paborsky, L. R., Caras, I. W., Fisher, K. L. & Gorman, C. M. Lipid association, but not the transmembrane domain, is required for tissue factor activity. Substitution of the transmembrane domain with a phosphatidylinositol anchor. J. Biol. Chem. 266, 21911–21916 (1991). (10.1016/S0021-9258(18)54723-2) / J. Biol. Chem. by LR Paborsky (1991)
  33. Jaffer, F. A. et al. Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 110, 170–176 (2004). (10.1161/01.CIR.0000134484.11052.44) / Circulation by FA Jaffer (2004)
  34. Tung, C. H. et al. Novel factor XIII probes for blood coagulation imaging. Chembiochem 4, 897–899 (2003). (10.1002/cbic.200300602) / Chembiochem by CH Tung (2003)
  35. Overoye-Chan, K. et al. EP-2104R: A fibrin-specific gadolinium-based MRI contrast agent for detection of thrombus. J. Am. Chem. Soc. 130, 6025–6039 (2008). (10.1021/ja800834y) / J. Am. Chem. Soc. by K Overoye-Chan (2008)
  36. Isaacs, F. J., Dwyer, D. J. & Collins, J. J. RNA synthetic biology. Nature Biotechnol. 24, 545–554 (2006). (10.1038/nbt1208) / Nature Biotechnol. by FJ Isaacs (2006)
  37. Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002). (10.1038/nature01257) / Nature by J Hasty (2002)
  38. Jungmann, R., Renner, S. & Simmel, F. C. From DNA nanotechnology to synthetic biology. HFSP J. 2, 99–109 (2008). (10.2976/1.2896331) / HFSP J. by R Jungmann (2008)
Dates
Type When
Created 14 years, 2 months ago (June 19, 2011, 2 p.m.)
Deposited 5 months, 3 weeks ago (March 6, 2025, 5:33 a.m.)
Indexed 1 week ago (Aug. 26, 2025, 2:44 a.m.)
Issued 14 years, 2 months ago (June 19, 2011)
Published 14 years, 2 months ago (June 19, 2011)
Published Online 14 years, 2 months ago (June 19, 2011)
Published Print 14 years, 2 months ago (July 1, 2011)
Funders 0

None

@article{von_Maltzahn_2011, title={Nanoparticles that communicate in vivo to amplify tumour targeting}, volume={10}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat3049}, DOI={10.1038/nmat3049}, number={7}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={von Maltzahn, Geoffrey and Park, Ji-Ho and Lin, Kevin Y. and Singh, Neetu and Schwöppe, Christian and Mesters, Rolf and Berdel, Wolfgang E. and Ruoslahti, Erkki and Sailor, Michael J. and Bhatia, Sangeeta N.}, year={2011}, month=jun, pages={545–552} }