Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Armstrong, A. R., Lyness, C., Panchmatia, P. M., Islam, M. S., & Bruce, P. G. (2011). The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2. Nature Materials, 10(3), 223–229.

Authors 5
  1. A. Robert Armstrong (first)
  2. Christopher Lyness (additional)
  3. Pooja M. Panchmatia (additional)
  4. M. Saiful Islam (additional)
  5. Peter G. Bruce (additional)
References 51 Referenced 273
  1. Choi, N. S., Kim, J. S., Yin, R. Z. & Kim, S. S. Electrochemical properties of lithium vanadium oxide as an anode material for lithium-ion battery. Mater. Chem. Phys. 116, 603–606 (2009). (10.1016/j.matchemphys.2009.05.013) / Mater. Chem. Phys. by NS Choi (2009)
  2. Song, J. H. et al. Electrochemical characteristics of lithium vanadate, Li1+xVO2, new anode materials for lithium ion batteries. J. Power Sources 195, 6157–6161 (2010). (10.1016/j.jpowsour.2009.12.103) / J. Power Sources by JH Song (2010)
  3. Kim, S-S., Kim, J., Koike, M. & Kobayashi, N. 14th International Meeting on Lithium Batteries, Tianjin, China, Abstr. #20 (2008).
  4. Kim, S-S., Nitta, Y., Nedoseykina, T. I. & Lee, J-C. US Patent Application US 2006/0088766 (2006).
  5. Armand, M. & Tarascon, J-M. Building better batteries. Nature 451, 652–657 (2008). (10.1038/451652a) / Nature by M Armand (2008)
  6. Nazri, G-A. & Pistoia, G. (eds) Lithium Batteries Science and Technology (Kluwer Academic/Plenum, 2004). (10.1007/978-0-387-92675-9)
  7. Arico, A. S., Bruce, P. G., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005). (10.1038/nmat1368) / Nature Mater. by AS Arico (2005)
  8. Bruce, P. G., Scrosati, B. & Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008). (10.1002/anie.200702505) / Angew. Chem. Int. Ed. by PG Bruce (2008)
  9. Huggins, R. A. in Handbook of Battery Materials (ed. Besenhard, J. O.) (Wiley-VCH, 1999) Part III, Chapter 4. / Handbook of Battery Materials by RA Huggins (1999)
  10. Winter, M. & Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallic and composites. Electrochim. Acta 45, 31–50 (1999). (10.1016/S0013-4686(99)00191-7) / Electrochim. Acta by M Winter (1999)
  11. Mao, O. & Dahn, J. R. Mechanically alloyed Sn–Fe(–C) powders as anode materials for Li ion batteries. III. Sn2Fe:SnFe3C active/inactive composites. J. Electrochem. Soc. 146, 423–427 (1999). (10.1149/1.1391624) / J. Electrochem. Soc. by O Mao (1999)
  12. Beaulieu, L. Y. & Dahn, J. R. The reaction of lithium with Sn–Mn–C intermetallics prepared by mechanical alloying. J. Electrochem. Soc. 147, 3237–3241 (2000). (10.1149/1.1393889) / J. Electrochem. Soc. by LY Beaulieu (2000)
  13. Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Mater. 9, 353–358 (2010). (10.1038/nmat2725) / Nature Mater. by A Magasinski (2010)
  14. Amadei, I., Panero, S., Scrosati, B., Cocco, G. & Schiffini, L. The Ni3Sn4 intermetallic as a novel electrode in lithium cells. J. Power Sources 143, 227–230 (2005). (10.1016/j.jpowsour.2004.11.050) / J. Power Sources by I Amadei (2005)
  15. Graetz, J., Ahn, C. C., Yazami, R. & Fuetz, B. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194–A197 (2003). (10.1149/1.1596917) / Electrochem. Solid-State Lett. by J Graetz (2003)
  16. Yang, J. et al. Si/C composites for high capacity lithium storage materials. Electrochem. Solid-State Lett. 6, A154–A156 (2003). (10.1149/1.1585251) / Electrochem. Solid-State Lett. by J Yang (2003)
  17. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008). (10.1038/nnano.2007.411) / Nature Nanotech. by CK Chan (2008)
  18. Kepler, K. D., Vaughey, J. T. & Thackeray, M. M. LixCu6Sn5 (0<x<13): An intermetallic insertion electrode for rechargeable lithium batteries. Electrochem. Solid-State Lett. 2, 307–309 (1999). (10.1149/1.1390819) / Electrochem. Solid-State Lett. by KD Kepler (1999)
  19. Fransson, L. M. L. et al. Phase transitions in lithiated Cu2Sb anodes for lithium batteries: An in situ X-ray diffraction study. Electrochem. Commun. 3, 317–323 (2001). (10.1016/S1388-2481(01)00140-0) / Electrochem. Commun. by LML Fransson (2001)
  20. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J-M. Nano-sized transition metal oxides as negative electrode material for lithium-ion batteries. Nature 407, 496–499 (2000). (10.1038/35035045) / Nature by P Poizot (2000)
  21. Leroux, F., Coward, G. R., Power, W. P. & Nazar, L. F. Understanding the nature of low-potential Li uptake into high volumetric capacity molybedenum oxides. Electrochem. Solid-State Lett. 1, 255–258 (1998). (10.1149/1.1390704) / Electrochem. Solid-State Lett. by F Leroux (1998)
  22. Taberna, P. L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 7, 567–573 (2006). (10.1038/nmat1672) / Nature Mater. by PL Taberna (2006)
  23. Pereira, N., Dupont, L., Tarascon, J. M, Klein, L. C. & Amatucci, G. G. Electrochemistry of Cu3N with lithium — A complex system with parallel processes. J. Electrochem. Soc. 150, A1273–A1280 (2003). (10.1149/1.1599845) / J. Electrochem. Soc. by N Pereira (2003)
  24. Li, H., Ritcher, G. & Maier, J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. 15, 736–739 (2003). (10.1002/adma.200304574) / Adv. Mater. by H Li (2003)
  25. Badway, F., Cosandey, F., Pereira, N. & Amatucci, G. G. Carbon metal fluoride nanocomposites: High capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318–A1327 (2003). (10.1149/1.1602454) / J. Electrochem. Soc. by F Badway (2003)
  26. Pralong, V., Souza, D. C. S., Leung, K. T. & Nazar, L. Reversible lithium uptake by CoP3 at low potential: Role of the anion. Electrochem. Commun. 4, 516–520 (2002). (10.1016/S1388-2481(02)00363-6) / Electrochem. Commun. by V Pralong (2002)
  27. Peled, E. The electrochemical-behaviour of alkali and alkaline-earth metals in non-aqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979). (10.1149/1.2128859) / J. Electrochem. Soc. by E Peled (1979)
  28. Fong, R., von Sacken, U. & Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical-cells. J. Electrochem. Soc. 137, 2009–2013 (1990). (10.1149/1.2086855) / J. Electrochem. Soc. by R Fong (1990)
  29. Besenhard, J. O., Winter, M., Yang, J. & Biberacher, W. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J. Power Sources 54, 228–231 (1995). (10.1016/0378-7753(94)02073-C) / J. Power Sources by JO Besenhard (1995)
  30. Park, S-Y., Choi, N-S., Yew, K-H., Lee, D-K. & Kim, S-S. US Patent Application US 2009/0068566 (2009).
  31. David, W. I. F., Goodenough, J. B., Thackeray, M. M. & Thomas, M. G. S. R. The crystal-structure of Li2MnO2 . Rev. Chim. Miner. 20, 636–642 (1983). / Rev. Chim. Miner. by WIF David (1983)
  32. Dahn, J. R., Von Sacken, U. & Michal, C. A. Structure and electrochemistry of Li1+/−yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ion. 44, 87–97 (1990). (10.1016/0167-2738(90)90049-W) / Solid State Ion. by JR Dahn (1990)
  33. Davidson, I., Greedan, J. E., Von Sacken, U., Michal, C. A. & Dahn, J. R. Structure of 1 T–Li2NiO2 from powder neutron-diffraction. Solid State Ion. 46, 243–247 (1991). (10.1016/0167-2738(91)90222-W) / Solid State Ion. by I Davidson (1991)
  34. Johnson, C. S. et al. The role of Li2MO2 structures (M=metal ion) in the electrochemistry of (x)LiMn0.5Ni0.5O2·(1−x)Li2TiO3 electrodes for lithium-ion batteries. Electrochem. Commun. 4, 492–498 (2002). (10.1016/S1388-2481(02)00346-6) / Electrochem. Commun. by CS Johnson (2002)
  35. Johnson, C. S. et al. Structural characterization of layered LixNi0.5Mn0.5O2 (0<x≤2) oxide electrodes for Li batteries. Chem. Mater. 15, 2313–2322 (2003). (10.1021/cm0204728) / Chem. Mater. by CS Johnson (2003)
  36. Islam, M. S., Driscoll, D. J., Fisher, C. A. J. & Slater, P. R. Atomic-scale investigation of defects, dopants and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater 17, 5085–5092 (2005). (10.1021/cm050999v) / Chem. Mater by MS Islam (2005)
  37. Kendrick, E., Kendrick, J., Knight, K. S., Islam, M. S. & Slater, P. R. Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nature Mater. 6, 871–874 (2007). (10.1038/nmat2039) / Nature Mater. by E Kendrick (2007)
  38. Catlow, C. R. A. (ed.) Computer Modelling in Inorganic Crystallography (Academic, 1997).
  39. Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First principles prediction of redox potentials in transition-metal compounds with LDA+U. Phys. Rev. B 70, 235121 (2004). (10.1103/PhysRevB.70.235121) / Phys. Rev. B by F Zhou (2004)
  40. Kang, K. S., Meng, Y. S., Breger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006). (10.1126/science.1122152) / Science by KS Kang (2006)
  41. Arrouvel, C., Parker, S. C. & Islam, M. S. Lithium insertion and transport in the TiO2–B anode material: A computational study. Chem. Mater. 21, 4778–4783 (2009). (10.1021/cm900373u) / Chem. Mater. by C Arrouvel (2009)
  42. Braithwaite, J. S., Catlow, C. R. A., Gale, J. D., Harding, J. H. & Ngoepe, P. E. Calculated cell discharge curve for lithium batteries with a V2O5 cathode. J. Mater. Chem. 10, 239–240 (2000). (10.1039/a908757e) / J. Mater. Chem. by JS Braithwaite (2000)
  43. Scanlon, D. O., Walsh, A., Morgan, B. J. & Watson, G. W. An ab initio study of reduction of V2O5 through the formation of oxygen vacancies and Li intercalation. J. Phys. Chem. C 112, 9903–9911 (2008). (10.1021/jp711334f) / J. Phys. Chem. C by DO Scanlon (2008)
  44. Meng, Y. S. & Arroyo-de Dompablo, M. E. First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ. Sci. 2, 589–609 (2009). / Energy Environ. Sci. by YS Meng (2009)
  45. Hodnett, B.K., Permanne, Ph. & Delmon, B. Influence of p/v ratio on the phase composition and catalytic activity of vanadium phosphate based catalysts. Appl. Catalys. 6, 231–244 (1983). (10.1016/0166-9834(83)80267-X) / Appl. Catalys. by BK Hodnett (1983)
  46. Coelho, A. A. Whole-profile structure solution from powder diffraction data using simulated annealing. J. Appl. Crystallogr. 33, 899–908 (2000). (10.1107/S002188980000248X) / J. Appl. Crystallogr. by AA Coelho (2000)
  47. Gale, J. D. & Rohl, A. L. The general utility lattice program. Mol. Simul. 29, 291–341 (2003). (10.1080/0892702031000104887) / Mol. Simul. by JD Gale (2003)
  48. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  49. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990). (10.1103/PhysRevB.41.7892) / Phys. Rev. B by D Vanderbilt (1990)
  50. Burke, K., Perdew, J. P. & Wang, Y. in Electronic Density Functional Theory: Recent Progress and New Directions (eds Dobson, J. F. & Vignale, G.) (Plenum, 1998). / Electronic Density Functional Theory: Recent Progress and New Directions by K Burke (1998)
  51. Yin, R. Z., Kim, Y. S., Choi, W. U., Kim, S. S. & Kim, H. J. Structural analysis and first-principles calculation of lithium vanadium oxide for advanced Li-ion batteries. Adv. Quantum Chem. 54, 23–33 (2008). (10.1016/S0065-3276(07)00003-2) / Adv. Quantum Chem. by RZ Yin (2008)
Dates
Type When
Created 14 years, 6 months ago (Feb. 13, 2011, 2:54 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:55 p.m.)
Indexed 4 days, 13 hours ago (Aug. 21, 2025, 2:26 p.m.)
Issued 14 years, 6 months ago (Feb. 13, 2011)
Published 14 years, 6 months ago (Feb. 13, 2011)
Published Online 14 years, 6 months ago (Feb. 13, 2011)
Published Print 14 years, 5 months ago (March 1, 2011)
Funders 0

None

@article{Armstrong_2011, title={The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1−xO2}, volume={10}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2967}, DOI={10.1038/nmat2967}, number={3}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Armstrong, A. Robert and Lyness, Christopher and Panchmatia, Pooja M. and Islam, M. Saiful and Bruce, Peter G.}, year={2011}, month=feb, pages={223–229} }