Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Matsunaga, T., Akola, J., Kohara, S., Honma, T., Kobayashi, K., Ikenaga, E., Jones, R. O., Yamada, N., Takata, M., & Kojima, R. (2011). From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nature Materials, 10(2), 129–134.

Authors 10
  1. Toshiyuki Matsunaga (first)
  2. Jaakko Akola (additional)
  3. Shinji Kohara (additional)
  4. Tetsuo Honma (additional)
  5. Keisuke Kobayashi (additional)
  6. Eiji Ikenaga (additional)
  7. Robert O. Jones (additional)
  8. Noboru Yamada (additional)
  9. Masaki Takata (additional)
  10. Rie Kojima (additional)
References 38 Referenced 246
  1. Meinders, E. R., Mijiritskii, A. V., van Pieterson, L. & Wuttig, M. Optical Data Storage Vol. 4 (Philips Research Book Series, Springer, 2006). / Optical Data Storage by ER Meinders (2006)
  2. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid phase transitions of GeTe–Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991). (10.1063/1.348620) / J. Appl. Phys. by N Yamada (1991)
  3. Matsunaga, T. & Yamada, N. Crystallographic studies on high-speed phase-change materials used for rewritable optical recording disks. Jpn J. Appl. Phys. 43, 4704–4712 (2004). (10.1143/JJAP.43.4704) / Jpn J. Appl. Phys. by T Matsunaga (2004)
  4. Elliott, S. R. Physics of Amorphous Materials (Longman, 1984). / Physics of Amorphous Materials by SR Elliott (1984)
  5. Lee, B-S. et al. Observation of the role of subcritical nuclei in crystallization of a glassy solid. Science 326, 980–984 (2009). (10.1126/science.1177483) / Science by B-S Lee (2009)
  6. Fukuyama, Y. et al. Time-resolved investigation of nanosecond crystal growth in rapid phase-change materials—correlation with the recording speed of digital versatile disc media. Appl. Phys. Exp. 1, 045001 (2008). (10.1143/APEX.1.045001) / Appl. Phys. Exp. by Y Fukuyama (2008)
  7. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007). (10.1038/nmat2009) / Nature Mater. by M Wuttig (2007)
  8. Matsunaga, T., Umetani, Y. & Yamada, N. Structural study of a Ag3.4In3.7Sb76.4Te16.5 quadruple compound utilized for phase-change optical disks. Phys. Rev. B 64, 184116 (2001). (10.1103/PhysRevB.64.184116) / Phys. Rev. B by T Matsunaga (2001)
  9. Akola, J. et al. Experimentally constrained density functional calculations of the amorphous structure of the prototypical phase-change material Ge2Sb2Te5 . Phys. Rev. B 80, 020201(R) (2009). (10.1103/PhysRevB.80.020201) / Phys. Rev. B by J Akola (2009)
  10. Kohara, S. et al. Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states. Appl. Phys. Lett. 89, 201910 (2006). (10.1063/1.2387870) / Appl. Phys. Lett. by S Kohara (2006)
  11. Lee, M. L., Shi, L. P., Tian, Y. T., Gan, C. L. & Miao, X. S. Crystallization behavior of Sb70Te30 and Ag3In5Sb60Te32 chalcogenide materials for optical media applications. Phys. Status Solidi a 205, 340–344 (2008). (10.1002/pssa.200723398) / Phys. Status Solidi a by ML Lee (2008)
  12. Akola, J. & Jones, R. O. Structural phase transitions on the nanoscale: The crucial pattern in the phase change materials Ge2Sb2Te5 and GeTe. Phys. Rev. B 76, 235201 (2007). (10.1103/PhysRevB.76.235201) / Phys. Rev. B by J Akola (2007)
  13. Akola, J. & Jones, R. O. Density functional study of amorphous, liquid, and crystalline Ge2Sb2Te5: Homopolar bonds and/or AB alternation? J. Phys. Condens. Matter 20, 365103 (2008). (10.1088/0953-8984/20/46/465103) / J. Phys. Condens. Matter by J Akola (2008)
  14. Tashiro, H. et al. Structural analysis of Ag–In–Sb–Te phase-change material. Jpn J. Appl. Phys. 41, 3758–3759 (2002). (10.1143/JJAP.41.3758) / Jpn J. Appl. Phys. by H Tashiro (2002)
  15. Kim, J-J. et al. Electronic structure of amorphous and crystalline (GeTe)1−x(Sb2Te3)x investigated using hard X-ray photoemission spectroscopy. Phys. Rev. B 76, 115124 (2007). (10.1103/PhysRevB.76.115124) / Phys. Rev. B by J-J Kim (2007)
  16. Hoffmann, R. Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures (Wiley-VCH, 1989). / Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures by R Hoffmann (1989)
  17. Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nature Mater. 7, 653–658 (2008). (10.1038/nmat2226) / Nature Mater. by K Shportko (2008)
  18. Huang, B. & Robertson, J. Bonding origin of optical contrast in phase-change memory materials. Phys. Rev. B 81, 081204 (2010). (10.1103/PhysRevB.81.081204) / Phys. Rev. B by B Huang (2010)
  19. Gronert, S. Gas phase studies of the competition between substitution and elimination reactions. Acc. Chem. Res. 36, 848–857 (2003). (10.1021/ar020042n) / Acc. Chem. Res. by S Gronert (2003)
  20. Mikosch, J. et al. Imaging nucleophilic substitution dynamics. Science 319, 183–186 (2008). (10.1126/science.1150238) / Science by J Mikosch (2008)
  21. Binnemans, K. Ionic liquid crystals. Chem. Rev. 105, 4148–4204 (2005). (10.1021/cr0400919) / Chem. Rev. by K Binnemans (2005)
  22. Njoroge, W. K. & Wuttig, M. Crystallization kinetics of sputter-deposited amorphous AgInSbTe films. J. Appl. Phys. 90, 3816–3821 (2001). (10.1063/1.1405141) / J. Appl. Phys. by WK Njoroge (2001)
  23. Shakhvorostov, D. et al. Evidence of electronic gap-driven metal–semiconductor transition in phase change materials. Proc. Natl Acad. Sci. USA 106, 10907–10911 (2009). (10.1073/pnas.0812942106) / Proc. Natl Acad. Sci. USA by D Shakhvorostov (2009)
  24. Cooper, A. R. Zachariasen’s rules, Madelung constant, and network topology. Phys. Chem. Glasses 19, 60–68 (1978). / Phys. Chem. Glasses by AR Cooper (1978)
  25. Ziman, J. M. Models of Disorder (Cambridge Univ. Press, 1979). / Models of Disorder by JM Ziman (1979)
  26. Her, U-C., Chen, H. & Hsu, Y-S. Effects of Ag and In addition on the optical properties and crystallization kinetics of eutectic Sb70Te30 phase-change recording film. J. Appl. Phys. 93, 10097–10103 (2003). (10.1063/1.1575493) / J. Appl. Phys. by U-C Her (2003)
  27. Caravati, S., Bernasconi, M., Kühne, T. D., Krack, M. & Parrinello, M. Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials. Appl. Phys. Lett. 89, 171906 (2007). (10.1063/1.2801626) / Appl. Phys. Lett. by S Caravati (2007)
  28. Hegedüs, J. & Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials. Nature Mater. 7, 399–405 (2008). (10.1038/nmat2157) / Nature Mater. by J Hegedüs (2008)
  29. Kohara, S. et al. Structural studies of disordered materials using high-energy X-ray diffraction from ambient to extreme conditions. J. Phys. Condens. Matter 19, 506101 (2007). (10.1088/0953-8984/19/50/506101) / J. Phys. Condens. Matter by S Kohara (2007)
  30. Ankudinov, A. L., Ravel, B., Rehr, J. J. & Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998). (10.1103/PhysRevB.58.7565) / Phys. Rev. B by AL Ankudinov (1998)
  31. Taguchi, T., Ozawa, T. & Yashiro, H. REX2000: Yet another XAFS analysis package. Phys. Scr. T115, 205–206 (2005). (10.1238/Physica.Topical.115a00205) / Phys. Scr. by T Taguchi (2005)
  32. Kobayashi, K. et al. High resolution–high energy X-ray photoelectron spectroscopy using third-generation synchrotron radiation source, and its application to Si–high k insulator systems. Appl. Phys. Lett. 83, 1005–1007 (2003). (10.1063/1.1595714) / Appl. Phys. Lett. by K Kobayashi (2003)
  33. Shirley, D. A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709–4714 (1972). (10.1103/PhysRevB.5.4709) / Phys. Rev. B by DA Shirley (1972)
  34. CPMD version 3.13. © IBM Corporation (1990–2009), © MPI für Festkörperforschung, Stuttgart (1997–2001).
  35. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008). (10.1103/PhysRevLett.100.136406) / Phys. Rev. Lett. by JP Perdew (2008)
  36. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991). (10.1103/PhysRevB.43.1993) / Phys. Rev. B by N Troullier (1991)
  37. Akola, J. & Jones, R. O. Structure of liquid phase change material AgInSbTe from density functional/molecular dynamics simulations. Appl. Phys. Lett. 94, 251905 (2009). (10.1063/1.3157166) / Appl. Phys. Lett. by J Akola (2009)
  38. Greben, O., Jóvári, P., Temleitner, L. & Pusztai, L. A new version of the RMC++ reverse Monte Carlo programme, aimed at investigating the structure of covalent glasses. J. Optoelectron. Adv. Mater. 9, 3021–3027 (2007). / J. Optoelectron. Adv. Mater. by O Greben (2007)
Dates
Type When
Created 14 years, 7 months ago (Jan. 9, 2011, 1:52 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:56 p.m.)
Indexed 3 weeks, 6 days ago (July 26, 2025, 5:28 a.m.)
Issued 14 years, 7 months ago (Jan. 9, 2011)
Published 14 years, 7 months ago (Jan. 9, 2011)
Published Online 14 years, 7 months ago (Jan. 9, 2011)
Published Print 14 years, 6 months ago (Feb. 1, 2011)
Funders 0

None

@article{Matsunaga_2011, title={From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials}, volume={10}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2931}, DOI={10.1038/nmat2931}, number={2}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Matsunaga, Toshiyuki and Akola, Jaakko and Kohara, Shinji and Honma, Tetsuo and Kobayashi, Keisuke and Ikenaga, Eiji and Jones, Robert O. and Yamada, Noboru and Takata, Masaki and Kojima, Rie}, year={2011}, month=jan, pages={129–134} }