Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Sekitani, T., Zschieschang, U., Klauk, H., & Someya, T. (2010). Flexible organic transistors and circuits with extreme bending stability. Nature Materials, 9(12), 1015–1022.

Authors 4
  1. Tsuyoshi Sekitani (first)
  2. Ute Zschieschang (additional)
  3. Hagen Klauk (additional)
  4. Takao Someya (additional)
References 31 Referenced 1,150
  1. Huitema, H. E. A., Gelinck, G. H., van Lieshout, P. J. G., van Veenendaal, E. & Touwslager, F. J. Flexible electronic-paper active-matrix displays. J. Soc. Inf. Display 14, 729–733 (2006). / J. Soc. Inf. Display by HEA Huitema (2006)
  2. Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005). / Proc. Natl Acad. Sci. USA by T Someya (2005)
  3. Bettinger, C. J. & Bao, Z. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22, 651–655 (2010). (10.1002/adma.200902322) / Adv. Mater. by CJ Bettinger (2010)
  4. Siegel, A. C. et al. Printable electronics: Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 20, 28–35 (2010). (10.1002/adfm.200901363) / Adv. Funct. Mater. by AC Siegel (2010)
  5. Ko, H. C. et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748–753 (2008). (10.1038/nature07113) / Nature by HC Ko (2008)
  6. Kodaira, T. et al. A flexible 2.1-in. active-matrix electrophoretic display with high resolution and a thickness of 100 μm. J. Soc. Inf. Displays 16, 107–111 (2008). (10.1889/1.2835015) / J. Soc. Inf. Displays by T Kodaira (2008)
  7. Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004). (10.1038/nature03090) / Nature by K Nomura (2004)
  8. Gleskova, H., Wagner, S., Soboyejo, W. & Suo, Z. Electrical response of amorphous silicon thin-film transistors under mechanical strain. J. Appl. Phys. 92, 6224–6229 (2002). (10.1063/1.1513187) / J. Appl. Phys. by H Gleskova (2002)
  9. Han, L., Song, K., Mandlik, P. & Wagner, S. Ultraflexible amorphous silicon transistors made with a resilient insulator. Appl. Phys. Lett. 96, 042111 (2010). (10.1063/1.3298364) / Appl. Phys. Lett. by L Han (2010)
  10. Sekitani, T. et al. Ultraflexible organic field-effect transistors embedded at a neutral strain position. Appl. Phys. Lett. 87, 173502 (2005). (10.1063/1.2115075) / Appl. Phys. Lett. by T Sekitani (2005)
  11. Roberts, M. E. et al. Cross-linked polymer gate dielectric films for low-voltage organic transistors. Chem. Mater. 21, 2292–2299 (2009). (10.1021/cm900637p) / Chem. Mater. by ME Roberts (2009)
  12. Jedaa, A. & Halik, M. Toward strain resistant flexible organic thin film transistors. Appl. Phys. Lett. 95, 103309 (2009). (10.1063/1.3216587) / Appl. Phys. Lett. by A Jedaa (2009)
  13. Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Mater. 8, 494–499 (2009). (10.1038/nmat2459) / Nature Mater. by T Sekitani (2009)
  14. Ishida, K. et al. Stretchable EMI measurement sheet with 8×8 coil array, 2 V organic CMOS decoder, and 0.18 μm silicon CMOS LSIs for electric and magnetic field detection. IEEE J. Solid State Circ. 45, 249–259 (2010). (10.1109/JSSC.2009.2034446) / IEEE J. Solid State Circ. by K Ishida (2010)
  15. Majewski, L. A., Schroeder, R., Voigt, M. & Grell, M. High performance organic transistors on cheap, commercial substrates. J. Phys. D 37, 3367–3372 (2004). (10.1088/0022-3727/37/24/003) / J. Phys. D by LA Majewski (2004)
  16. Yoon, M. H., Facchetti, A. & Marks, T. J. σ–π molecular dielectric multilayers for low-voltage organic thin-film transistors. Proc. Natl Acad. Sci. USA 102, 4678–4682 (2005). (10.1073/pnas.0501027102) / Proc. Natl Acad. Sci. USA by MH Yoon (2005)
  17. Jang, Y. et al. Patterning the organic electrodes of all-organic thin film transistors with a simple spray printing technique. Appl. Phys. Lett. 89, 183501 (2006). (10.1063/1.2372583) / Appl. Phys. Lett. by Y Jang (2006)
  18. Kim, C. et al. Printable cross-linked polymer blend dielectrics. Design strategies, synthesis, microstructures, and electrical properties, with organic field-effect transistors as testbeds. J. Am. Chem. Soc. 130, 6867–6878 (2008). (10.1021/ja801047g) / J. Am. Chem. Soc. by C Kim (2008)
  19. Tan, H. S. et al. Solution-processed trilayer inorganic dielectric for high performance flexible organic field effect transistors. Appl. Phys. Lett. 93, 183503 (2008). (10.1063/1.3013845) / Appl. Phys. Lett. by HS Tan (2008)
  20. Cai, Q. J. et al. Solution-processable barium titanate and strontium titanate nanoparticle dielectrics for low-voltage organic thin-film transistors. Chem. Mater. 21, 3153–3161 (2009). / Chem. Mater. by QJ Cai (2009)
  21. Zhang, X. H., Potscavage, W. J. Jr, Choi, S. & Kippelen, B. Low-voltage flexible organic complementary inverters with high noise margin and high dc gain. Appl. Phys. Lett. 94, 043312 (2009). (10.1063/1.3077025) / Appl. Phys. Lett. by XH Zhang (2009)
  22. Zschieschang, U. et al. Flexible low-voltage organic transistors and circuits based on a high-mobility organic semiconductor with good air stability. Adv. Mater. 22, 982–985 (2010). (10.1002/adma.200902740) / Adv. Mater. by U Zschieschang (2010)
  23. Lee, W. H. & Wang, C. C. Effect of nanocomposite gate dielectric roughness on pentacene field-effect transistor. J. Vac. Sci. Technol. B 27, 1116–1121 (2009). (10.1116/1.3117360) / J. Vac. Sci. Technol. B by WH Lee (2009)
  24. Crone, B. K. et al. Design and fabrication of organic complementary circuits. J. Appl. Phys. 89, 5125–5132 (2001). (10.1063/1.1362635) / J. Appl. Phys. by BK Crone (2001)
  25. Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007). (10.1038/nature05533) / Nature by H Klauk (2007)
  26. Bode, D. et al. Noise-margin analysis for organic thin-film complementary technology. IEEE Trans. Electr. Dev. 57, 201–208 (2010). (10.1109/TED.2009.2035546) / IEEE Trans. Electr. Dev. by D Bode (2010)
  27. Sekitani, T & Someya, T. Air-stable operation of organic field-effect transistors on plastic films using organic/metallic hybrid passivation layers. Jpn J. Appl. Phys. 46, 4300–4305 (2007). (10.1143/JJAP.46.4300) / Jpn J. Appl. Phys. by T Sekitani (2007)
  28. Klauk, H. et al. Flexible organic complementary circuits. IEEE Trans. Electr. Dev. 52, 618–622 (2005). (10.1109/TED.2005.844739) / IEEE Trans. Electr. Dev. by H Klauk (2005)
  29. Yan, H. et al. Solution processed top-gate n-channel transistors and complementary circuits on plastics operating in ambient conditions. Adv. Mater. 20, 3393–3398 (2008). (10.1002/adma.200800629) / Adv. Mater. by H Yan (2008)
  30. Na, J. H., Kitamura, M. & Arakawa, Y. Low-voltage-operating organic complementary circuits based on pentacene and C60 transistors. Thin Solid Films 517, 2079–2082 (2009). / Thin Solid Films by JH Na (2009)
  31. Behl, M. & Lendlein, A. Actively moving polymers. Soft Matter 3, 58–67 (2007). (10.1039/B610611K) / Soft Matter by M Behl (2007)
Dates
Type When
Created 14 years, 9 months ago (Nov. 7, 2010, 1:26 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:21 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 7, 2025, 4:22 p.m.)
Issued 14 years, 9 months ago (Nov. 7, 2010)
Published 14 years, 9 months ago (Nov. 7, 2010)
Published Online 14 years, 9 months ago (Nov. 7, 2010)
Published Print 14 years, 8 months ago (Dec. 1, 2010)
Funders 0

None

@article{Sekitani_2010, title={Flexible organic transistors and circuits with extreme bending stability}, volume={9}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2896}, DOI={10.1038/nmat2896}, number={12}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Sekitani, Tsuyoshi and Zschieschang, Ute and Klauk, Hagen and Someya, Takao}, year={2010}, month=nov, pages={1015–1022} }