Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Yazyev, O. V., & Louie, S. G. (2010). Electronic transport in polycrystalline graphene. Nature Materials, 9(10), 806–809.

Authors 2
  1. Oleg V. Yazyev (first)
  2. Steven G. Louie (additional)
References 30 Referenced 831
  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007). (10.1038/nmat1849) / Nature Mater. by AK Geim (2007)
  2. Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today 10, 20–27 (2007). (10.1016/S1369-7021(06)71788-6) / Mater. Today by MI Katsnelson (2007)
  3. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). (10.1103/RevModPhys.81.109) / Rev. Mod. Phys. by AH Castro Neto (2009)
  4. Albrecht, T. R., Mizes, H. A., Nogami, J., Park, S-i. & Quate, C. F. Observation of tilt boundaries in graphite by scanning tunneling microscopy and associated multiple tip effects. Appl. Phys. Lett. 52, 362–364 (1988). (10.1063/1.99465) / Appl. Phys. Lett. by TR Albrecht (1988)
  5. Clemmer, C. R. & Beebe, T. P. Jr Graphite: A mimic for DNA and other biomolecules in scanning tunneling microscope studies. Science 251, 640–642 (1991). (10.1126/science.1992517) / Science by CR Clemmer (1991)
  6. Heckl, W. M. & Binnig, G. Domain walls on graphite mimic DNA. Ultramicroscopy 42, 1073–1078 (1992). (10.1016/0304-3991(92)90404-8) / Ultramicroscopy by WM Heckl (1992)
  7. C˘ervenka, J. & Flipse, C. F. J. Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects. Phys. Rev. B 79, 195429 (2009). (10.1103/PhysRevB.79.195429) / Phys. Rev. B by J C˘ervenka (2009)
  8. C˘ervenka, J., Katsnelson, M. I. & Flipse, C. F. J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nature Phys. 5, 840–844 (2009). (10.1038/nphys1399) / Nature Phys. by J C˘ervenka (2009)
  9. Coraux, J. et al. Growth of graphene on Ir(111). New J. Phys. 11, 023006 (2009). (10.1088/1367-2630/11/3/039801) / New J. Phys. by J Coraux (2009)
  10. Miller, D. L. et al. Observing the quantization of zero mass carriers in graphene. Science 324, 924–927 (2009). (10.1126/science.1171810) / Science by DL Miller (2009)
  11. Loginova, E., Nie, S., Thurmer, K., Bartelt, N. C. & McCarty, K. F. Defects of graphene on Ir(111): Rotational domains and ridges. Phys. Rev. B 80, 085430 (2009). (10.1103/PhysRevB.80.085430) / Phys. Rev. B by E Loginova (2009)
  12. Park, H. J., Meyer, J., Roth, S. & Skákalová, V. Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48, 1088–1094 (2010). (10.1016/j.carbon.2009.11.030) / Carbon by HJ Park (2010)
  13. Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I. & Batzill, M. An extended defect in graphene as a metallic wire. Nature Nanotech. 5, 326–329 (2010). (10.1038/nnano.2010.53) / Nature Nanotech. by J Lahiri (2010)
  14. Sutton, A. P. & Balluffi, R. W. Interfaces in Crystalline Materials (Clarendon Press, 1995). / Interfaces in Crystalline Materials by AP Sutton (1995)
  15. Read, W. T. & Shockley, W. Dislocation models of crystal grain boundaries. Phys. Rev. 78, 275–289 (1950). (10.1103/PhysRev.78.275) / Phys. Rev. by WT Read (1950)
  16. Yazyev, O. V. & Louie, S. G. Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B 81, 195420 (2010). (10.1103/PhysRevB.81.195420) / Phys. Rev. B by OV Yazyev (2010)
  17. White, C. T. & Mintmire, J. W. Density of states reflects diameter in nanotubes. Nature 394, 29–30 (1998). (10.1038/27801) / Nature by CT White (1998)
  18. Mintmire, J. W. & White, C. T. Universal density of states for carbon nanotubes. Phys. Rev. Lett. 81, 2506–2509 (1998). (10.1103/PhysRevLett.81.2506) / Phys. Rev. Lett. by JW Mintmire (1998)
  19. Carraro, C. & Nelson, D. R. Grain-boundary buckling and spin-glass models of disorder in membranes. Phys. Rev. E 48, 3082–3090 (1993). (10.1103/PhysRevE.48.3082) / Phys. Rev. E by C Carraro (1993)
  20. Simonis, P. et al. STM study of a grain boundary in graphite. Surf. Sci. 511, 319–322 (2002). (10.1016/S0039-6028(02)01511-X) / Surf. Sci. by P Simonis (2002)
  21. Liu, Y. & Yakobson, B. I. Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett. 10, 2178–2183 (2010). (10.1021/nl100988r) / Nano Lett. by Y Liu (2010)
  22. Koskinen, P., Malola, S. & Häkkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 101, 115502 (2008). (10.1103/PhysRevLett.101.115502) / Phys. Rev. Lett. by P Koskinen (2008)
  23. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006). (10.1038/nphys384) / Nature Phys. by MI Katsnelson (2006)
  24. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Phys. 5, 222–226 (2009). (10.1038/nphys1198) / Nature Phys. by AF Young (2009)
  25. Stander, N., Huard, B. & Goldhaber-Gordon, D. Evidence for Klein tunneling in graphene p–n junctions. Phys. Rev. Lett. 102, 026807 (2009). (10.1103/PhysRevLett.102.026807) / Phys. Rev. Lett. by N Stander (2009)
  26. Xia, F., Farmer, D. B., Lin, Y-M. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010). (10.1021/nl9039636) / Nano Lett. by F Xia (2010)
  27. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002). (10.1088/0953-8984/14/11/302) / J. Phys. Condens. Matter by JM Soler (2002)
  28. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  29. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991). (10.1103/PhysRevB.43.1993) / Phys. Rev. B by N Troullier (1991)
  30. Brandbyge, M., Mozos, J-L., Ordejón, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002). (10.1103/PhysRevB.65.165401) / Phys. Rev. B by M Brandbyge (2002)
Dates
Type When
Created 14 years, 11 months ago (Aug. 22, 2010, 2:46 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:19 p.m.)
Indexed 1 hour, 36 minutes ago (Aug. 21, 2025, 1:22 p.m.)
Issued 14 years, 11 months ago (Aug. 22, 2010)
Published 14 years, 11 months ago (Aug. 22, 2010)
Published Online 14 years, 11 months ago (Aug. 22, 2010)
Published Print 14 years, 10 months ago (Oct. 1, 2010)
Funders 0

None

@article{Yazyev_2010, title={Electronic transport in polycrystalline graphene}, volume={9}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2830}, DOI={10.1038/nmat2830}, number={10}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Yazyev, Oleg V. and Louie, Steven G.}, year={2010}, month=aug, pages={806–809} }