Crossref
journal-article
Springer Science and Business Media LLC
Nature Materials (297)
References
50
Referenced
1,243
-
Becker, N. et al. Molecular nanosprings in spider capture-silk threads. Nature Mater. 2, 278–283 (2003).
(
10.1038/nmat858
) / Nature Mater. by N Becker (2003) -
Shao, Z. Z. & Vollrath, F. Materials: Surprising strength of silkworm silk. Nature 418, 741–741 (2002).
(
10.1038/418741a
) / Nature by ZZ Shao (2002) -
Vollrath, F. & Knight, D. P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).
(
10.1038/35069000
) / Nature by F Vollrath (2001) -
Vepari, C. & Kaplan, D. L. Silk as a biomaterial. Prog. Polymer Sci. 32, 991–1007 (2007).
(
10.1016/j.progpolymsci.2007.05.013
) / Prog. Polymer Sci. by C Vepari (2007) -
Termonia, Y. Molecular modeling of spider silk elasticity. Macromolecules 27, 7378–7381 (1994).
(
10.1021/ma00103a018
) / Macromolecules by Y Termonia (1994) -
Du, N. et al. Design of superior spider silk: From nanostructure to mechanical properties. Biophys. J. 91, 4528–4535 (2006).
(
10.1529/biophysj.106.089144
) / Biophys. J. by N Du (2006) -
Lee, S. M. et al. Greatly increased toughness of infiltrated spider silk. Science 324, 488–492 (2009).
(
10.1126/science.1168162
) / Science by SM Lee (2009) -
Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A. R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl Acad. Sci. USA 105, 6590–6595 (2008).
(
10.1073/pnas.0709246105
) / Proc. Natl Acad. Sci. USA by S Rammensee (2008) -
Hayashi, C. Y., Shipley, N. H. & Lewis, R. V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24, 271–275 (1999).
(
10.1016/S0141-8130(98)00089-0
) / Int. J. Biol. Macromol. by CY Hayashi (1999) -
Lefevre, T., Rousseau, M. E. & Pezolet, M. Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys. J. 92, 2885–2895 (2007).
(
10.1529/biophysj.106.100339
) / Biophys. J. by T Lefevre (2007) -
van Beek, J. D., Hess, S., Vollrath, F. & Meier, B. H. The molecular structure of spider dragline silk: Folding and orientation of the protein backbone. Proc. Natl Acad. Sci. USA 99, 10266–10271 (2002).
(
10.1073/pnas.152162299
) / Proc. Natl Acad. Sci. USA by JD van Beek (2002) -
Thiel, B. L., Guess, K. B. & Viney, C. Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers 41, 703–719 (1997).
(
10.1002/(SICI)1097-0282(199706)41:7<703::AID-BIP1>3.0.CO;2-T
) / Biopolymers by BL Thiel (1997) -
Keten, S. & Buehler, M. J. Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett. 8, 743–748 (2008).
(
10.1021/nl0731670
) / Nano Lett. by S Keten (2008) -
Keten, S. & Buehler, M. J. Asymptotic strength limit of hydrogen bond assemblies in proteins at vanishing pulling rates. Phys. Rev. Lett. 100, 198301 (2008).
(
10.1103/PhysRevLett.100.198301
) / Phys. Rev. Lett. by S Keten (2008) -
Rousseau, M. E., Lefevre, T., Beaulieu, L., Asakura, T. & Pezolet, M. Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy. Biomacromolecules 5, 2247–2257 (2004).
(
10.1021/bm049717v
) / Biomacromolecules by ME Rousseau (2004) -
Grubb, D. T. & Jelinski, L. W. Fiber morphology of spider silk: The effects of tensile deformation. Macromolecules 30, 2860–2867 (1997).
(
10.1021/ma961293c
) / Macromolecules by DT Grubb (1997) -
Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H.E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).
(
10.1126/science.276.5315.1109
) / Science by M Rief (1997) -
Lee, E. H., Gao, M., Pinotsis, N., Wilmanns, M. & Schulten, K. Mechanical strength of the titin Z1Z2-telethonin complex. Structure 14, 497–509 (2006).
(
10.1016/j.str.2005.12.005
) / Structure by EH Lee (2006) -
Marszalek, P. E. et al. Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999).
(
10.1038/47083
) / Nature by PE Marszalek (1999) -
Brockwell, D. J. et al. Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nature Struct. Biol. 10, 731–737 (2003).
(
10.1038/nsb968
) / Nature Struct. Biol. by DJ Brockwell (2003) -
Eom, K., Li, P. C., Makarov, D. E. & Rodin, G. J. Relationship between the mechanical properties and topology of cross-linked polymer molecules: Parallel strands maximize the strength of model polymers and protein domains. J. Phys. Chem. B 107, 8730–8733 (2003).
(
10.1021/jp035178x
) / J. Phys. Chem. B by K Eom (2003) -
Sulkowska, J. I. & Cieplak, M. Mechanical stretching of proteins—a theoretical survey of the Protein Data Bank. J. Phys. Condens. Matter 19, 283201 (2007).
(
10.1088/0953-8984/19/28/283201
) / J. Phys. Condens. Matter by JI Sulkowska (2007) -
Buehler, M. J. & Yung, Y. C. Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Mater. 8, 175–188 (2009).
(
10.1038/nmat2387
) / Nature Mater. by MJ Buehler (2009) -
Schwaiger, I., Sattler, C., Hostetter, D. R. & Rief, M. The myosin coiled-coil is a truly elastic protein structure. Nature Mater. 1, 232–235 (2002).
(
10.1038/nmat776
) / Nature Mater. by I Schwaiger (2002) -
Sotomayor, M. & Schulten, K. Single-molecule experiments in vitro and in silico. Science 316, 1144–1148 (2007).
(
10.1126/science.1137591
) / Science by M Sotomayor (2007) -
Ma, B. & Nussinov, R. Molecular dynamics simulations of the unfolding of beta(2)-microglobulin and its variants. Protein Eng. 16, 561–575 (2003).
(
10.1093/protein/gzg079
) / Protein Eng. by B Ma (2003) -
Brooks, C. L. Methodological advances in molecular-dynamics simulations of biological-systems. Curr. Opin. Struct. Biol. 5, 211–215 (1995).
(
10.1016/0959-440X(95)80078-6
) / Curr. Opin. Struct. Biol. by CL Brooks (1995) -
Fossey, S. A., Nemethy, G., Gibson, K. D. & Scheraga, H. A. Conformational energy studies of beta-sheets of model silk fibroin peptides 1. Sheets of poly(Ala–Gly) chains. Biopolymers 31, 1529–1541 (1991).
(
10.1002/bip.360311309
) / Biopolymers by SA Fossey (1991) -
Shao, Z. Z. & Vollrath, F. The effect of solvents on the contraction and mechanical properties of spider silk. Polymer 40, 1799–1806 (1999).
(
10.1016/S0032-3861(98)00266-3
) / Polymer by ZZ Shao (1999) -
Oroudjev, E. et al. Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy. Proc. Natl Acad. Sci. USA 99, 6460–6465 (2002).
(
10.1073/pnas.082526499
) / Proc. Natl Acad. Sci. USA by E Oroudjev (2002) -
Sirichaisit, J., Brookes, V. L., Young, R. J. & Vollrath, F. Analysis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules 4, 387–394 (2003).
(
10.1021/bm0256956
) / Biomacromolecules by J Sirichaisit (2003) -
Pampaloni, F. et al. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proc. Natl Acad. Sci. USA 103, 10248–10253 (2006).
(
10.1073/pnas.0603931103
) / Proc. Natl Acad. Sci. USA by F Pampaloni (2006) -
Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).
(
10.1126/science.1150057
) / Science by TP Knowles (2007) - Connor, J. J. MIT-Prentice Hall Series on Civil, Environmental, and Systems Engineering xiv 53–56 (Prentice Hall Pearson Education, 2003). / MIT-Prentice Hall Series on Civil, Environmental, and Systems Engineering xiv by JJ Connor (2003)
-
Krasnov, I. et al. Mechanical properties of silk: Interplay of deformation on macroscopic and molecular length scales. Phys. Rev. Lett. 100, 048104 (2008).
(
10.1103/PhysRevLett.100.048104
) / Phys. Rev. Lett. by I Krasnov (2008) -
Philip, M. C. et al. Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polym. Adv. Technol. 5, 401–410 (1994).
(
10.1002/pat.1994.220050801
) / Polym. Adv. Technol. by MC Philip (1994) -
Ko, F. K. & Jovicic, J. Modeling of mechanical properties and structural design of spider web. Biomacromolecules 5, 780–785 (2004).
(
10.1021/bm0345099
) / Biomacromolecules by FK Ko (2004) -
Keten, S. & Buehler, M. J. Strength limit of entropic elasticity in beta-sheet protein domains. Phys. Rev. E 78, 061913 (2008).
(
10.1103/PhysRevE.78.061913
) / Phys. Rev. E by S Keten (2008) -
Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).
(
10.1016/j.pmatsci.2007.06.001
) / Prog. Mater. Sci. by P Fratzl (2007) -
Hartmann, M. A. & Fratzl, P. Sacrificial ionic bonds need to be randomly distributed to provide shear deformability. Nano Lett. 9, 3603–3607 (2009).
(
10.1021/nl901816s
) / Nano Lett. by MA Hartmann (2009) -
Keckes, J. et al. Cell-wall recovery after irreversible deformation of wood. Nature Mater. 2, 810–814 (2003).
(
10.1038/nmat1019
) / Nature Mater. by J Keckes (2003) -
LeDuc, P. R. & Robinson, D. N. Using lessons from cellular and molecular structures for future materials. Adv. Mater. 19, 3761–3770 (2007).
(
10.1002/adma.200701286
) / Adv. Mater. by PR LeDuc (2007) -
Gao, H. J., Ji, B. H., Jager, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).
(
10.1073/pnas.0631609100
) / Proc. Natl Acad. Sci. USA by HJ Gao (2003) -
Porter, D. & Vollrath, F. The role of kinetics of water and amide bonding in protein stability. Soft Matter. 4, 328–336 (2008).
(
10.1039/B713972A
) / Soft Matter. by D Porter (2008) -
Claessens, M. M. A. E., Bathe, M., Frey, E. & Bausch, A. R. Actin-binding proteins sensitively mediate F-actin bundle stiffness. Nature Mater. 5, 748–753 (2006).
(
10.1038/nmat1718
) / Nature Mater. by M M A E Claessens (2006) -
Xiao, S. B., Stacklies, W., Cetinkaya, M., Markert, B. & Grater, F. Mechanical response of silk crystalline units from force-distribution analysis. Biophys. J. 96, 3997–4005 (2009).
(
10.1016/j.bpj.2009.02.052
) / Biophys. J. by SB Xiao (2009) - Nelson, M. T. et al. NAMD: A parallel, object oriented molecular dynamics program. Int. J. Supercomputer Appl. High Performance Comput. 10, 251–268 (1996). / Int. J. Supercomputer Appl. High Performance Comput. by MT Nelson (1996)
-
MacKerell, A. D. et al. All-atom empirical potential for molecular modelling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).
(
10.1021/jp973084f
) / J. Phys. Chem. B by AD MacKerell (1998) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).
(
10.1088/0953-8984/14/11/302
) / J. Phys. Condens. Matter by JM Soler (2002)
Dates
Type | When |
---|---|
Created | 15 years, 5 months ago (March 15, 2010, 12:13 a.m.) |
Deposited | 3 years, 1 month ago (July 6, 2022, 3:18 p.m.) |
Indexed | 38 minutes ago (Aug. 27, 2025, 6:50 p.m.) |
Issued | 15 years, 5 months ago (March 14, 2010) |
Published | 15 years, 5 months ago (March 14, 2010) |
Published Online | 15 years, 5 months ago (March 14, 2010) |
Published Print | 15 years, 4 months ago (April 1, 2010) |
@article{Keten_2010, title={Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk}, volume={9}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2704}, DOI={10.1038/nmat2704}, number={4}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Keten, Sinan and Xu, Zhiping and Ihle, Britni and Buehler, Markus J.}, year={2010}, month=mar, pages={359–367} }