Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Recham, N., Chotard, J.-N., Dupont, L., Delacourt, C., Walker, W., Armand, M., & Tarascon, J.-M. (2009). A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nature Materials, 9(1), 68–74.

Authors 7
  1. N. Recham (first)
  2. J-N. Chotard (additional)
  3. L. Dupont (additional)
  4. C. Delacourt (additional)
  5. W. Walker (additional)
  6. M. Armand (additional)
  7. J-M. Tarascon (additional)
References 28 Referenced 539
  1. Nagaura, T & Tozawa, K. Lithium ion rechargeable battery. Prog. Batt. Sol. Cells 9, 209–217 (1990). / Prog. Batt. Sol. Cells by T Nagaura (1990)
  2. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005). (10.1038/nmat1368) / Nature Mater. by AS Arico (2005)
  3. Ravet, N. et al. 196th Meet. Electrochem. Soc., abstr. 127 (1999).
  4. Armand, M., Gauthier, M., Magnan, J.-F. & Ravet, N. Method for synthesis of carbon-coated redox materials with controlled size. World Patent WO 02/27823 A1 (2001).
  5. Poizot, P., Laruelle, S., Grugeon, S, Dupont, L. & Tarascon, J.-M. Nano-sized transition metal oxides as negative electrode material for lithium-ion batteries. Nature 407, 496–499 (2000). (10.1038/35035045) / Nature by P Poizot (2000)
  6. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive electrode materials for lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997). (10.1149/1.1837571) / J. Electrochem. Soc. by AK Padhi (1997)
  7. Li, G., Azuma, H. & Tohda, H. LiMnPO4 as a cathode for Li-ion batteries. Electrochem. Solid State Lett. 5, A135–A137 (2002). (10.1149/1.1475195) / Electrochem. Solid State Lett. by G Li (2002)
  8. Nytén, A., Abouimrane, A., Armand, M., Gustafsson, T. & Thomas, J. O. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem. Commun. 7, 156–160 (2005). (10.1016/j.elecom.2004.11.008) / Electrochem. Commun. by A Nytén (2005)
  9. Yi-Xiao, L., Zheng-Liang, G. & Yong, Y. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. J. Power Sources 174, 528–532 (2007). (10.1016/j.jpowsour.2007.06.126) / J. Power Sources by L Yi-Xiao (2007)
  10. Kokalj, A. et al. Beyond one-electron reaction in Li cathode materials: Designing Li2MnxFe1−xSiO4 . Chem. Mater. 19, 3633–3640 (2007). (10.1021/cm063011l) / Chem. Mater. by A Kokalj (2007)
  11. Abouimrane, A., Armand, M. & Ravet, N. 203rd Meet. Electrochem. Soc. Ext. Abstr. (2003).
  12. Barker, J., Saidi, M. Y. & Swoyer, J. L. A Comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J. Electrochem. Soc. 151, A1670–A1677 (2004). (10.1149/1.1785796) / J. Electrochem. Soc. by J Barker (2004)
  13. Barker, J., Saidi, M. Y., Gover, R. K. B., Burns, P. & Bryan, A. The effect of Al substitution on the lithium insertion properties of lithium vanadium fluorophosphate, LiVPO4F. J. Power Sources 174, 927–931 (2007). (10.1016/j.jpowsour.2007.06.079) / J. Power Sources by J Barker (2007)
  14. Ellis, B. L., Makahnouk, W. R. M, Makimura, Y., Toghill, K. & Nazar, L. F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries materials. Nature Mater. 6, 749–753 (2007). (10.1038/nmat2007) / Nature Mater. by BL Ellis (2007)
  15. Pahdi, A. K., Manivannan, M. & Goodenough, J. B. Tuning the position of the redox couples in materials with NASICON structure by anionic substitution. J. Electrochem. Soc. 145, 1518–1520 (1998). (10.1149/1.1838513) / J. Electrochem. Soc. by AK Pahdi (1998)
  16. Pahdi, A. K., Nanjundasvamy, K. S., Masquelier, C. & Goodenough, J. B. Mapping of transition metal redox energies in phosphates with Nasicon structure by lithium intercalation. J. Electrochem. Soc. 144, 2581–2586 (1997). (10.1149/1.1837868) / J. Electrochem. Soc. by AK Pahdi (1997)
  17. Barker, J., Saidi, M. Y. & Swoyer, J. L. Lithium metal fluorophosphates materials and preparation thereof. US Patent 6,387,568 B1 (2002).
  18. Recham, N. et al. Ionothermal synthesis of Li-based fluorophosphates electrodes. Chem. Mater. 10.1021/cm9021497 (2009). (10.1021/cm9021497)
  19. Sebastian, L., Gopalakrishnan, J. & Piffard, Y. Synthesis crystal structure and lithium ion conductivity of LiMgFSO4 . J. Mater. Chem. 12, 374–377 (2002). (10.1039/b108289m) / J. Mater. Chem. by L Sebastian (2002)
  20. Recham, N. et al. Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications. Chem. Mater. 21, 1096–1107 (2009). (10.1021/cm803259x) / Chem. Mater. by N Recham (2009)
  21. Recham, N. et al. Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J. Electrochem. Soc. 156, A993 (2009). (10.1149/1.3236480) / J. Electrochem. Soc. by N Recham (2009)
  22. Boultif, A. & Louer, D. Powder pattern indexing with the dichotomy method. J. Appl. Crystallogr. 37, 724–731 (2004). (10.1107/S0021889804014876) / J. Appl. Crystallogr. by A Boultif (2004)
  23. Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993). (10.1016/0921-4526(93)90108-I) / Physica B by J Rodriguez-Carvajal (1993)
  24. Favre-Nicolin, V. & Cerny, R. Free objects for crystallography: A modular approach to ab initio structure determination from powder pattern. J. Appl. Crystallogr. 35, 734–743 (2002); <http://objcryst.sourceforge.net>. (10.1107/S0021889802015236)
  25. Amin, R., Balaya, P. & Maier, J. Anisotropy of electronic and ionic transport in LiFePO4 . Electrochem. Solid State Lett. 10, A13–A16 (2007). (10.1149/1.2388240) / Electrochem. Solid State Lett. by R Amin (2007)
  26. Wildner, M. & Giester, G. The crystal structures of kieserite-type compounds. I. Crystal structures of Me(II) SO4*H2O, (M=Fe, Co, Ni, Zn). Neues JB Miner. Monat. 1991, 296–306 (1991). / Neues JB Miner. Monat. by M Wildner (1991)
  27. Kiessling, F.-M. et al. Growth of GaAs crystals from Ga-rich melts by the VCz method without liquid encapsulation. J. Crystal Growth 269, 218–228 (2004). (10.1016/j.jcrysgro.2004.04.124) / J. Crystal Growth by F-M Kiessling (2004)
  28. Doyle, M., Newman, J. & Reimers, J. A quick method of measuring the capacity versus discharge rate for a dual lithium-ion insertion cell undergoing cycling. J. Power Sources 52, 211–216 (1994). (10.1016/0378-7753(94)02012-4) / J. Power Sources by M Doyle (1994)
Dates
Type When
Created 15 years, 8 months ago (Nov. 29, 2009, 1:41 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:23 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 5, 2025, 8:11 a.m.)
Issued 15 years, 8 months ago (Nov. 29, 2009)
Published 15 years, 8 months ago (Nov. 29, 2009)
Published Online 15 years, 8 months ago (Nov. 29, 2009)
Published Print 15 years, 7 months ago (Jan. 1, 2010)
Funders 0

None

@article{Recham_2009, title={A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries}, volume={9}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2590}, DOI={10.1038/nmat2590}, number={1}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Recham, N. and Chotard, J-N. and Dupont, L. and Delacourt, C. and Walker, W. and Armand, M. and Tarascon, J-M.}, year={2009}, month=nov, pages={68–74} }