Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Alloyeau, D., Ricolleau, C., Mottet, C., Oikawa, T., Langlois, C., Le Bouar, Y., Braidy, N., & Loiseau, A. (2009). Size and shape effects on the order–disorder phase transition in CoPt nanoparticles. Nature Materials, 8(12), 940–946.

Authors 8
  1. D. Alloyeau (first)
  2. C. Ricolleau (additional)
  3. C. Mottet (additional)
  4. T. Oikawa (additional)
  5. C. Langlois (additional)
  6. Y. Le Bouar (additional)
  7. N. Braidy (additional)
  8. A. Loiseau (additional)
References 35 Referenced 371
  1. Plumer, M. L., Van Ek, J. & Weller, D. The Physics of Ultra-High-Density Magnetic Recording (Springer, 2001). (10.1007/978-3-642-56657-8) / The Physics of Ultra-High-Density Magnetic Recording by ML Plumer (2001)
  2. Sellmyer, D. J., Yu, M. & Kirby, R. D. Nanostructured magnetic films for extremely high density recording. Nanostruct. Mater. 12, 1021–1026 (1999). (10.1016/S0965-9773(99)00291-3) / Nanostruct. Mater. by DJ Sellmyer (1999)
  3. Yu, M., Liu, Y. & Sellmyer, D. J. Nanostructure and magnetic properties of composite CoPt:C films for extremely high-density recording. J. Appl. Phys. 87, 6959–6961 (2000). (10.1063/1.372899) / J. Appl. Phys. by M Yu (2000)
  4. Himpsel, F. J., Ortega, J. E., Mankey, G. J. & Willis, R. F. Magnetic nanostructures. Adv. Phys. 47, 511–597 (1998). (10.1080/000187398243519) / Adv. Phys. by FJ Himpsel (1998)
  5. Weller, D. & Moser, A. Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423–4439 (1999). (10.1109/20.809134) / IEEE Trans. Magn. by D Weller (1999)
  6. Ariake, J., Chiba, T., Watanabe, S., Honda, N. & Ouchi, K. Magnetic and structural properties of Co–Pt perpendicular recording media with large magnetic anisotropy. J. Magn. Magn. Mater. 287, 229–233 (2005). (10.1016/j.jmmm.2004.10.037) / J. Magn. Magn. Mater. by J Ariake (2005)
  7. Klemmer, T., Hoydick, D., Okumura, H., Zhang, B. & Soffa, W. A. Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets. Scr. Metallurg. Mater. 33, 1793–1805 (1995). (10.1016/0956-716X(95)00413-P) / Scr. Metallurg. Mater. by T Klemmer (1995)
  8. Sakuma, A. First principle calculation of the magnetocrystalline anisotropy energy of FePt and CoPt ordered alloys. J. Phys. Soc. Jpn 63, 3053–3058 (1994). (10.1143/JPSJ.63.3053) / J. Phys. Soc. Jpn by A Sakuma (1994)
  9. Christodoulides, J. A. et al. CoPt and FePt thin films for high density recording media. J. Appl. Phys. 87, 6938–6940 (2000). (10.1063/1.372892) / J. Appl. Phys. by JA Christodoulides (2000)
  10. Sato, K., Bian, B. & Hirotsu, Y. Fabrication of oriented L10–FePt and FePd nanoparticles with large coercivity. J. Appl. Phys. 91, 8516–8518 (2002). (10.1063/1.1456446) / J. Appl. Phys. by K Sato (2002)
  11. Sato, K. & Hirotsu, Y. Magnetoanisotropy, long-range order parameter and thermal stability of isolated L10 FePt nanoparticles with mutual fixed orientation. J. Magn. Magn. Mater. 272–276, 1497–1499 (2004). (10.1016/j.jmmm.2003.12.1044) / J. Magn. Magn. Mater. by K Sato (2004)
  12. Yasuda, H. & Mori, H. Effect of cluster size on the chemical ordering in nanometer-sized Au-75 at.%Cu alloy clusters. Z. Für Phys. D 37, 181–186 (1996). (10.1007/s004600050026) / Z. Für Phys. D by H Yasuda (1996)
  13. Miyazaki, T. et al. Size effect on the ordering of L10 FePt nanoparticles. Phys. Rev. B 72, 144419 (2005). (10.1103/PhysRevB.72.144419) / Phys. Rev. B by T Miyazaki (2005)
  14. Takahashi, Y. H., Ohkubo, T., Ohnuma, M. & Hono, K. Size effect on the ordering of FePt granular films. J. Appl. Phys. 93, 7166–7168 (2003). (10.1063/1.1555895) / J. Appl. Phys. by YH Takahashi (2003)
  15. Sato, K., Hirotsu, Y., Mori, H., Wang, Z. & Hirayama, T. Long-range order parameter of single L10–FePd nanoparticle determined by nanobeam electron diffraction: Particle size dependence of the order parameter. J. Appl. Phys. 98, 024308 (2005). (10.1063/1.1985973) / J. Appl. Phys. by K Sato (2005)
  16. Yang, B., Asta, M., Mryasov, O. N., Klemmer, T. J. & Chantrell, R. W. The nature of A1–L10 ordering transitions in alloy nanoparticles: A Monte Carlo study. Acta Mater. 54, 4201–4211 (2006). (10.1016/j.actamat.2006.05.013) / Acta Mater. by B Yang (2006)
  17. Chepulskii, R. V. & Butler, W. H. Temperature and particle-size dependence of the equilibrium order parameter of FePt alloys. Phys. Rev. B 72, 134205 (2005). (10.1103/PhysRevB.72.134205) / Phys. Rev. B by RV Chepulskii (2005)
  18. Muller, M. & Albe, K. Lattice Monte Carlo simulations of FePt nanoparticles: Influence of size, composition, and surface segregation on order–disorder phenomena. Phys. Rev. B 72, 094203 (2005). (10.1103/PhysRevB.72.094203) / Phys. Rev. B by M Muller (2005)
  19. Moskovkin, P. et al. Model predictions and experimental characterization of Co–Pt alloy clusters. Eur. Phys. J. D 43, 27–32 (2007). (10.1140/epjd/e2007-00066-0) / Eur. Phys. J. D by P Moskovkin (2007)
  20. Moskovkin, P. & Hou, M. Metropolis Monte Carlo predictions of free Co–Pt nanoclusters. J. Alloys Compounds 434–435, 550–554 (2007). (10.1016/j.jallcom.2006.08.178) / J. Alloys Compounds by P Moskovkin (2007)
  21. Le Bouar, Y., Loiseau, A. & Finel, A. Origin of the complex wetting behaviour in Co–Pt alloys. Phys. Rev. B 68, 224203 (2003). (10.1103/PhysRevB.68.224203) / Phys. Rev. B by Y Le Bouar (2003)
  22. Dai, Z. R., Sun, S. & Wang, Z. L. Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals. Nano Lett. 1, 443–447 (2001). (10.1021/nl0100421) / Nano Lett. by ZR Dai (2001)
  23. Yu, A. C. C., Mizuno, M., Sasaki, Y., Kondo, H. & Hiraga, K. Structural characteristics and magnetic properties of chemically synthesized CoPt nanoparticles. Appl. Phys. Lett. 81, 3768–3770 (2002). (10.1063/1.1521569) / Appl. Phys. Lett. by ACC Yu (2002)
  24. Wang, A., Li, T., Zhou, Y., Jiang, H. & Zheng, W. Coupled Co–Pt nanoparticles in C matrix. Mater. Sci Eng. B 103, 118–121 (2003). (10.1016/S0921-5107(03)00158-2) / Mater. Sci Eng. B by A Wang (2003)
  25. Zinke-Allmang, M., Feldman, L. C. & Grabow, M. H. Clustering on surfaces. Surf. Sci. Rep. 16, 377–463 (1992). (10.1016/0167-5729(92)90006-W) / Surf. Sci. Rep. by M Zinke-Allmang (1992)
  26. Alloyeau, D., Langlois, C., Ricolleau, C., Le Bouar, Y. & Loiseau, A. A TEM in situ experiment as a guideline for the synthesis of as-grown ordered CoPt nanoparticles. Nanotechnology 18, 375301 (2007). (10.1088/0957-4484/18/37/375301) / Nanotechnology by D Alloyeau (2007)
  27. Alloyeau, D. et al. STEM nanodiffraction technique for structural analysis of CoPt nanoparticles. Ultramicroscopy 108, 656–662 (2008). (10.1016/j.ultramic.2007.10.006) / Ultramicroscopy by D Alloyeau (2008)
  28. Rosato, V., Guillopé, M. & Legrand, B. Thermodynamical and structural properties of fcc transition metals using a simple tight-binding model. Phil. Mag. A 59, 321–336 (1989). (10.1080/01418618908205062) / Phil. Mag. A by V Rosato (1989)
  29. Rossi, G., Ferrando, R. & Mottet, C. Structure and chemical ordering in CoPt nanoalloys. Faraday Discuss. 138, 193–210 (2008). (10.1039/B705415G) / Faraday Discuss. by G Rossi (2008)
  30. Tournus, F. et al. Evidence of L10 chemical order in CoPt nanoclusters: Direct observation and magnetic signature. Phys. Rev. B 77, 144411 (2008). (10.1103/PhysRevB.77.144411) / Phys. Rev. B by F Tournus (2008)
  31. Langlois, C. et al. Growth and structural properties of CuAg and CoPt bimetallic nanoparticles. Faraday Discuss. 138, 375–391 (2008). (10.1039/B705912B) / Faraday Discuss. by C Langlois (2008)
  32. Rellinghaus, B. et al. On the L10 ordering kinetics in Fe–Pt nanoparticles. IEEE Trans. Magn. 42, 3048 (2006). (10.1109/TMAG.2006.880087) / IEEE Trans. Magn. by B Rellinghaus (2006)
  33. Alloyeau, D. et al. Comparing electron tomography and HRTEM slicing methods as tools to measure the thickness of nanoparticles. Ultramicroscopy 109, 788–796 (2009). (10.1016/j.ultramic.2009.02.002) / Ultramicroscopy by D Alloyeau (2009)
  34. Cliff, G. & Lorimer, G. W. The quantitative analysis of thin specimen. J. Microsc. 1032, 203–207 (1975). (10.1111/j.1365-2818.1975.tb03895.x) / J. Microsc. by G Cliff (1975)
  35. Van Cappellen, E. The parameterless correction method in X-ray microanalysis. Microsc. Microanal. Microstruct. 1, 1–22 (1990). (10.1051/mmm:01990001010100) / Microsc. Microanal. Microstruct. by E Van Cappellen (1990)
Dates
Type When
Created 15 years, 9 months ago (Nov. 15, 2009, 1:27 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 2:58 p.m.)
Indexed 3 days, 16 hours ago (Aug. 23, 2025, 9:44 p.m.)
Issued 15 years, 9 months ago (Nov. 15, 2009)
Published 15 years, 9 months ago (Nov. 15, 2009)
Published Online 15 years, 9 months ago (Nov. 15, 2009)
Published Print 15 years, 8 months ago (Dec. 1, 2009)
Funders 0

None

@article{Alloyeau_2009, title={Size and shape effects on the order–disorder phase transition in CoPt nanoparticles}, volume={8}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2574}, DOI={10.1038/nmat2574}, number={12}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Alloyeau, D. and Ricolleau, C. and Mottet, C. and Oikawa, T. and Langlois, C. and Le Bouar, Y. and Braidy, N. and Loiseau, A.}, year={2009}, month=nov, pages={940–946} }