Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Ji, X., Lee, K. T., & Nazar, L. F. (2009). A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nature Materials, 8(6), 500–506.

Authors 3
  1. Xiulei Ji (first)
  2. Kyu Tae Lee (additional)
  3. Linda F. Nazar (additional)
References 47 Referenced 5,627
  1. Winter, M. & Brodd, R. Batteries, fuel cells and supercapacitors. Chem. Rev. 104, 4245–4269 (2004). (10.1021/cr020730k) / Chem. Rev. by M Winter (2004)
  2. Bruce, P. G. Energy storage beyond the horizon: Rechargeable lithium batteries. Solid State Ion. 179, 752–760 (2008). (10.1016/j.ssi.2008.01.095) / Solid State Ion. by PG Bruce (2008)
  3. Rauh, R. D., Abraham, K. M., Pearson, G. F., Surprenant, J. K. & Brummer, S. B. A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523–527 (1979). (10.1149/1.2129079) / J. Electrochem. Soc. by RD Rauh (1979)
  4. Shim, J., Striebel, K. A. & Cairns, E. J. The lithium/sulfur rechargeable cell. J. Electrochem. Soc. 149, A1321–A1325 (2002). (10.1149/1.1503076) / J. Electrochem. Soc. by J Shim (2002)
  5. Kang, K., Meng, Y. S., Bréger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006). (10.1126/science.1122152) / Science by K Kang (2006)
  6. Peled, E. & Yamin, H. Lithium/sulfur organic battery. Prog. Batteries Sol. Cells 5, 56–58 (1984). / Prog. Batteries Sol. Cells by E Peled (1984)
  7. Chu, M.-Y. Rechargeable positive electrodes. US Patent US5686201 (1997).
  8. Peramunage, D. & Licht, S. A solid sulfur cathode for aqueous batteries. Science 261, 1029–1032 (1993). (10.1126/science.261.5124.1029) / Science by D Peramunage (1993)
  9. Dean, J. A. (ed.) Lange’s Handbook of Chemistry 3rd edn,3–5 (McGraw-Hill, 1985).
  10. Cunningham, P. T., Johnson, S. A. & Cairns, E. J. Phase equilibria in lithium–chalcogen systems: Lithium–sulfur. J. Electrochem. Soc. 119, 1448–1450 (1972). (10.1149/1.2404020) / J. Electrochem. Soc. by PT Cunningham (1972)
  11. Choi, J.-W. et al. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochim. Acta 52, 2075–2082 (2007). (10.1016/j.electacta.2006.08.016) / Electrochim. Acta by J-W Choi (2007)
  12. Rauh, R. D., Shuker, F. S., Marston, J. M. & Brummer, S. B. Formation of lithium polysulfides in aprotic media. J. Inorg. Nucl. Chem. 39, 1761–1766 (1977). (10.1016/0022-1902(77)80198-X) / J. Inorg. Nucl. Chem. by RD Rauh (1977)
  13. Cheon, S.-E. et al. Rechargeable lithium sulfur battery II. Rate capability and cycle characteristics. J. Electrochem. Soc. 150, A800–A805 (2003). (10.1149/1.1571533) / J. Electrochem. Soc. by S-E Cheon (2003)
  14. Shin, J. H. & Cairns, E. J. Characterization of N-methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-tetra(ethylene glycol) dimethyl ether mixtures as a Li metal cell electrolyte. J. Electrochem. Soc. 155, A368–A373 (2008). (10.1149/1.2869876) / J. Electrochem. Soc. by JH Shin (2008)
  15. Yuan, L. X. et al. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem. Commun. 8, 610–614 (2006). (10.1016/j.elecom.2006.02.007) / Electrochem. Commun. by LX Yuan (2006)
  16. Ryu, H.-S. et al. Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. J. Power Sources 163, 201–206 (2006). (10.1016/j.jpowsour.2005.12.061) / J. Power Sources by H-S Ryu (2006)
  17. Wang, J. et al. Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon 46, 229–235 (2008). (10.1016/j.carbon.2007.11.007) / Carbon by J Wang (2008)
  18. Chung, K.-I., Kim, W.-S. & Choi, Y.-K. Lithium phosphorous oxynitride as a passive layer for anodes in lithium secondary batteries. J. Electroanal. Chem. 566, 263–267 (2004). (10.1016/j.jelechem.2003.11.035) / J. Electroanal. Chem. by K-I Chung (2004)
  19. Visco, S. J., Nimon, Y. S. & Katz, B. D. Ionically conductive composites for protection of active metal anodes. US Patent 7,282,296, October 16 (2007).
  20. Skotheim, T. A., Sheehan, C. J., Mikhaylik, Y. V. & Affinito, J. Lithium anodes for electrochemical cells. US patent 7247,408, July 24 (2007).
  21. Akridge, J. R., Mikhaylik, Y. V. & White, N. Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ion. 175, 243–245 (2004). (10.1016/j.ssi.2004.07.070) / Solid State Ion. by JR Akridge (2004)
  22. Mikhaylik, Y. V. & Akridge, J. R. Low temperature performance of Li/S batteries. J. Electrochem. Soc. 150, A306–A311 (2003). (10.1149/1.1545452) / J. Electrochem. Soc. by YV Mikhaylik (2003)
  23. Zheng, W., Liu, Y. W., Hu, X. G. & Zhang, C. F. Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochim. Acta 51, 1330–1335 (2006). (10.1016/j.electacta.2005.06.021) / Electrochim. Acta by W Zheng (2006)
  24. Cheon, S.-E. et al. Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode. J. Electrochem. Soc. 151, A2067–A2073 (2004). (10.1149/1.1815153) / J. Electrochem. Soc. by S-E Cheon (2004)
  25. Song, M.-S. et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathode for Li/S secondary batteries. J. Electrochem. Soc. 151, A791–A795 (2004). (10.1149/1.1710895) / J. Electrochem. Soc. by M-S Song (2004)
  26. Kobayashi, T. et al. All solid-state battery with sulfur electrode and thio-LISICON electrolyte. J. Power Sources 182, 621 (2008). (10.1016/j.jpowsour.2008.03.030) / J. Power Sources by T Kobayashi (2008)
  27. Wang, J., Yang, J., Xie, J. & Xu, N. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 14, 963–965 (2002). (10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P) / Adv. Mater. by J Wang (2002)
  28. Ryoo, R., Joo, S. H. & Jun, S. Synthesis of highly ordered carbon molecular sieves via template mediated structural transformations. J. Phys. Chem. B 103, 7743–7746 (1999). (10.1021/jp991673a) / J. Phys. Chem. B by R Ryoo (1999)
  29. Lee, J., Kim, J. & Hyeon, T. Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2006). (10.1002/adma.200501576) / Adv. Mater. by J Lee (2006)
  30. Jiao, F. & Bruce, P. G. Mesoporous crystalline β-MnO2—a reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 19, 657–660 (2007). (10.1002/adma.200602499) / Adv. Mater. by F Jiao (2007)
  31. Jiao, F., Shaju, K. M. & Bruce, P. G. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angew. Chem. Int. Ed. 117, 6708–6711 (2005). (10.1002/ange.200501663) / Angew. Chem. Int. Ed. by F Jiao (2005)
  32. Ji, X., Herle, P. S., Rho, Y. H. & Nazar, L. F. Carbon/MoO2 composite based on porous semi-graphitized nanorod assemblies from in situ reaction of tri-block polymers. Chem. Mater. 19, 374–383 (2007). (10.1021/cm060961y) / Chem. Mater. by X Ji (2007)
  33. Grigoriants, I. et al. The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries. Chem. Commun. 921–923 (2005). (10.1039/b414240c)
  34. Joo, S. et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001). (10.1038/35084046) / Nature by S Joo (2001)
  35. Ryoo, R., Joo, S., Kruk, M. & Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 13, 677–681 (2001). (10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C) / Adv. Mater. by R Ryoo (2001)
  36. Lei, J. et al. Immobilization of enzymes in mesoporous materials: Controlling the entrance to nanospace. Micropor. Mesopor. Mater. 73, 121–128 (2004). (10.1016/j.micromeso.2004.05.004) / Micropor. Mesopor. Mater. by J Lei (2004)
  37. Miessler, G. L. & Tarr, D. A. Inorganic Chemistry (Pearson Education, 1998). / Inorganic Chemistry by GL Miessler (1998)
  38. Landau, M. V., Vradman, L., Wang, X. & Titelman, L. High loading TiO2 and ZrO2 nanocrystals ensembles inside the mesopores of SBA-15: Preparation, texture and stability. Micropor. Mesopor. Mater. 78, 117–129 (2005). (10.1016/j.micromeso.2004.09.023) / Micropor. Mesopor. Mater. by MV Landau (2005)
  39. Kim, J., Lee, J. & Hyeon, T. Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites. Carbon 42, 2711–2719 (2004). (10.1016/j.carbon.2004.06.018) / Carbon by J Kim (2004)
  40. Yamin, H., Gorenshtein, A., Penciner, J., Sternberg, Y. & Peled, E. Lithium sulfur battery. Oxidation/reduction mechanisms of polysulfides in THF solutions. J. Electrochem. Soc. 135, 1045–1048 (1988). (10.1149/1.2095868) / J. Electrochem. Soc. by H Yamin (1988)
  41. Kumaresan, K., Mikhaylik, Y. & White, R. E. A mathematical model for a lithium–sulfur cell. J. Electrochem. Soc. 155, A576–A582 (2008). (10.1149/1.2937304) / J. Electrochem. Soc. by K Kumaresan (2008)
  42. Gierszal, K. P., Kim, T.-W., Ryoo, R. & Jaroniec, M. Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3hd mesostructures as templates. J. Phys. Chem. B 109, 23263–23268 (2005). (10.1021/jp054562m) / J. Phys. Chem. B by KP Gierszal (2005)
  43. Yu, C., Fan, J., Tian, B. & Zhao, D. Morphology development of mesoporous materials: A colloidal phase separation mechanism. Chem. Mater. 16, 889–898 (2004). (10.1021/cm035011g) / Chem. Mater. by C Yu (2004)
  44. Jun, S. et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122, 10712–10713 (2000). (10.1021/ja002261e) / J. Am. Chem. Soc. by S Jun (2000)
  45. Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938). (10.1021/ja01269a023) / J. Am. Chem. Soc. by S Brunauer (1938)
  46. Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951). (10.1021/ja01145a126) / J. Am. Chem. Soc. by EP Barrett (1951)
  47. Xu, K. & Angell, C. A. High anodic stability of a new electrolyte solvent: Unsymmetric noncyclic aliphatic sulfone. J. Electrochem. Soc. 145, L70–L72 (1998). (10.1149/1.1838419) / J. Electrochem. Soc. by K Xu (1998)
Dates
Type When
Created 16 years, 3 months ago (May 17, 2009, 1:13 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:01 p.m.)
Indexed 16 minutes ago (Aug. 25, 2025, 8:44 p.m.)
Issued 16 years, 3 months ago (May 17, 2009)
Published 16 years, 3 months ago (May 17, 2009)
Published Online 16 years, 3 months ago (May 17, 2009)
Published Print 16 years, 2 months ago (June 1, 2009)
Funders 0

None

@article{Ji_2009, title={A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries}, volume={8}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2460}, DOI={10.1038/nmat2460}, number={6}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Ji, Xiulei and Lee, Kyu Tae and Nazar, Linda F.}, year={2009}, month=may, pages={500–506} }