Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Midgley, P. A., & Dunin-Borkowski, R. E. (2009). Electron tomography and holography in materials science. Nature Materials, 8(4), 271–280.

Authors 2
  1. Paul A. Midgley (first)
  2. Rafal E. Dunin-Borkowski (additional)
References 105 Referenced 764
  1. Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Mater. 8, 263–270 (2009). (10.1038/nmat2380) / Nature Mater. by DA Muller (2009)
  2. Urban, K. W. Is science prepared for atomic-resolution microscopy? Nature Mater. 8, 260–262 (2009). (10.1038/nmat2407) / Nature Mater. by KW Urban (2009)
  3. Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten. Ber. Verh. K. Sachs. Ges. Wiss. Leipzig Math.-Phys. Kl. 69, 262–277 (1917). / Ber. Verh. K. Sachs. Ges. Wiss. Leipzig Math.-Phys. Kl. by J Radon (1917)
  4. Cormack, A. M. Representation of a function by its line integrals with some radiological applications. J. Appl. Phys. 34, 2722–2727 (1963). (10.1063/1.1729798) / J. Appl. Phys. by AM Cormack (1963)
  5. Hounsfield, G. N. A method of and apparatus for examination of a body by radiation such as X or gamma radiation. UK patent 1,283,915 (1972).
  6. De Rosier, D. J. & Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134 (1968). (10.1038/217130a0) / Nature by DJ De Rosier (1968)
  7. Hoppe, W., Langer, R., Knesch, G. & Poppe, C. Protein-kristallstrukturanalyse mit Elektronenstrahlen. Naturwissenschaften 55, 333–336 (1968). (10.1007/BF00600449) / Naturwissenschaften by W Hoppe (1968)
  8. Hart, R. G. Electron microscopy of unstained biological material: the polytropic montage. Science 159, 1464–1467 (1968). (10.1126/science.159.3822.1464) / Science by RG Hart (1968)
  9. Unwin, P. N. T. & Henderson, R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425–440 (1975). (10.1016/0022-2836(75)90212-0) / J. Mol. Biol. by PNT Unwin (1975)
  10. Frank, J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Academic, 1996). / Three-Dimensional Electron Microscopy of Macromolecular Assemblies by J Frank (1996)
  11. Baumeister, W., Grimm, R. & Walz, J. Electron tomography of molecules and cells. Trends Cell Biol. 9, 81–85 (1999). (10.1016/S0962-8924(98)01423-8) / Trends Cell Biol. by W Baumeister (1999)
  12. Chao, W., Hartneck, B. D., Liddle, J. A., Anderson, E. H. & Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15nm. Nature 435, 1210–1213 (2005). (10.1038/nature03719) / Nature by W Chao (2005)
  13. Chapman, H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006). (10.1364/JOSAA.23.001179) / J. Opt. Soc. Am. A by HN Chapman (2006)
  14. Magerle, R. Nanotomography. Phys. Rev. Lett. 85, 2749–2752 (2000). (10.1103/PhysRevLett.85.2749) / Phys. Rev. Lett. by R Magerle (2000)
  15. Cerezo, A., Godfrey, T. J. & Smith, G. D. W. Application of a position-sensitive detector to atom probe microanalysis. Rev. Sci. Instrum. 59, 862–866 (1988). (10.1063/1.1139794) / Rev. Sci. Instrum. by A Cerezo (1988)
  16. Inkson, B. J., Mulvihill, M. & Möbus, G. 3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography. Scripta Mater. 45, 753–758 (2001). (10.1016/S1359-6462(01)01090-9) / Scripta Mater. by BJ Inkson (2001)
  17. Schaffer, M., Wagner, J., Schaffer, B., Schmied, M. & Mulders, H. Automated three-dimensional X-ray analysis using a dual-beam FIB. Ultramicroscopy 107, 587–597 (2007). (10.1016/j.ultramic.2006.11.007) / Ultramicroscopy by M Schaffer (2007)
  18. Konrad, J., Zaefferer, S. & Raabe, D. Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Math. 54, 1369–1380 (2006). (10.1016/j.actamat.2005.11.015) / Acta Math. by J Konrad (2006)
  19. Uchic, M. D., Groeber, M. A., Dimiduk, D. M. & Simmons, J. P. 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scripta Mater. 55, 23–28 (2006). (10.1016/j.scriptamat.2006.02.039) / Scripta Mater. by MD Uchic (2006)
  20. Spontak, R. J., Williams, M. C. & Agard, D. A. Three-dimensional study of cylindrical morphology in a styrene–butadiene–styrene block copolymer. Polymer 29, 387–395 (1988). (10.1016/0032-3861(88)90354-0) / Polymer by RJ Spontak (1988)
  21. Koster, A. J., Ziese, U., Verkleij, A. J., Janssen, A. H. & de Jong, K. P. Three-dimensional electron microscopy: a novel imaging and characterization technique with nanometer scale resolution for materials science. J. Phys. Chem. B 104, 9368–9370 (2000). (10.1021/jp0015628) / J. Phys. Chem. B by AJ Koster (2000)
  22. Hawkes, P. W. The Electron Microscope as a Structure Projector in Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope (ed. Frank, J.) 17–39 (Plenum, 1992). / The Electron Microscope as a Structure Projector in Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope by PW Hawkes (1992)
  23. Crowther, R. A., de Rosier, D. J. & Klug, A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. A 319, 317–340 (1970). / Proc. R. Soc. Lond. A by RA Crowther (1970)
  24. Radermacher, M. Weighted Back-Projection Methods in Electron Tomography 2nd edn (ed. Frank, J.) 245–274 (Springer, 2006). / Weighted Back-Projection Methods in Electron Tomography by M Radermacher (2006)
  25. Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972). (10.1016/0022-5193(72)90180-4) / J. Theor. Biol. by P Gilbert (1972)
  26. Batenburg, K. J. & Sijbers, J. in Proc. IEEE Conf. Image Processing Vol. 4, 133–136 (IEEE, 2007). / Proc. IEEE Conf. Image Processing by KJ Batenburg (2007)
  27. Batenburg, K. J. Network Flow Algorithms for Discrete Tomography. Ph.D. thesis, Univ. Leiden; http://visielab.ua.ac.be/staff/batenburg/papers/ba_phdthesis_2006.pdf (2006). / Network Flow Algorithms for Discrete Tomography by KJ Batenburg (2006)
  28. Kawase, N., Kato, M., Nishioka, H. & Jinnai, H. Transmission electron microtomography without the “missing wedge” for quantitative structural analysis. Ultramicroscopy 107, 8–15 (2007). (10.1016/j.ultramic.2006.04.007) / Ultramicroscopy by N Kawase (2007)
  29. Arslan, I., Tong, J. R. & Midgley, P. A. Reducing the missing wedge: high-resolution dial axis tomography of inorganic materials. Ultramicroscopy 106, 994–1000 (2006). (10.1016/j.ultramic.2006.05.010) / Ultramicroscopy by I Arslan (2006)
  30. Tong, J. R., Arslan, I. & Midgley, P. A. A novel dual-axis iterative algorithm for electron tomography. J. Struct. Biol. 153, 55–63 (2006). (10.1016/j.jsb.2005.10.005) / J. Struct. Biol. by JR Tong (2006)
  31. Koguchi, M. et al. Three-dimensional STEM for observing nanostructures. J. Electron Microsc. 50, 235–241 (2001). / J. Electron Microsc. by M Koguchi (2001)
  32. Arslan, I., Marquis, E. A., Homer, M., Hekmaty, M. A. & Bartelt, N. C. Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 1579–1585 (2008). (10.1016/j.ultramic.2008.05.008) / Ultramicroscopy by I Arslan (2008)
  33. Midgley, P. A. & Weyland, M. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413–431 (2003). (10.1016/S0304-3991(03)00105-0) / Ultramicroscopy by PA Midgley (2003)
  34. Midgley, P. A., Weyland, M., Thomas, J. M. & Johnson, B. F. G. Z-Contrast tomography: a technique in three-dimensional nanostructural analysis based on Rutherford scattering. Chem. Commun. 10, 907–908 (2001). (10.1039/b101819c) / Chem. Commun. by PA Midgley (2001)
  35. Thomas, J. M. et al. The chemical application of high-resolution electron tomography: bright field or dark field? Angew. Chem. Int. Ed. 43, 6745–6747 (2004). (10.1002/anie.200461453) / Angew. Chem. Int. Ed. by JM Thomas (2004)
  36. Ward, E. P. W., Yates, T. J. V., Fernández, J.-J., Vaughan, D. E. W. & Midgley, P. A. Three-dimensional nanoparticle distribution and local curvature of heterogeneous catalysts revealed by electron tomography. J. Phys. Chem. C 111, 11501–11505 (2007). (10.1021/jp072441b) / J. Phys. Chem. C by EPW Ward (2007)
  37. Weyland, M., Yates, T. J. V., Dunin-Borkowski, R. E., Laffont, L. & Midgley, P. A. Nanoscale analysis of three-dimensional structures by electron tomography. Scripta Mater. 55, 29–33 (2006). (10.1016/j.scriptamat.2005.12.058) / Scripta Mater. by M Weyland (2006)
  38. Buseck, P. R. et al. Magnetite morphology and life on Mars. Proc. Natl Acad. Sci. USA 98, 13490–13495 (2001). (10.1073/pnas.241387898) / Proc. Natl Acad. Sci. USA by PR Buseck (2001)
  39. De Jong, K. P. & Koster, A. J. Three-dimensional electron microscopy of mesoporous materials - recent strides towards spatial imaging at the nanometer scale. ChemPhysChem 3, 776–780 (2002). (10.1002/1439-7641(20020916)3:9<776::AID-CPHC776>3.0.CO;2-E) / ChemPhysChem by KP De Jong (2002)
  40. Yates, T. J. V. et al. Three-dimensional real-space crystallography of MCM-48 mesoporous silica revealed by scanning transmission electron tomography. Chem. Phys. Lett. 418, 540–543 (2006). (10.1016/j.cplett.2005.11.031) / Chem. Phys. Lett. by TJV Yates (2006)
  41. Kaneko, K. et al. TEM characterization of Ge precipitates in an Al–1.6 at% Ge alloy. Ultramicroscopy 108, 210–220 (2008). (10.1016/j.ultramic.2007.04.020) / Ultramicroscopy by K Kaneko (2008)
  42. Porter, A. E. et al. Direct imaging of single-walled carbon nanotubes in human cells. Nature Nanotechnol. 2, 713–717 (2007). (10.1038/nnano.2007.347) / Nature Nanotechnol. by AE Porter (2007)
  43. Midgley, P. A., Weyland, M. & Stegmann, H. in Advanced Tomographic Methods in Materials Research and Engineering (ed. Banhart, J.) 335–373 (Oxford Univ. Press, 2008). (10.1093/acprof:oso/9780199213245.003.0012) / Advanced Tomographic Methods in Materials Research and Engineering by PA Midgley (2008)
  44. Bals, S., Batenburg, K. J., Verbeeck, J., Sijbers, J. & van Tendeloo, G. Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes. Nano Lett. 7, 3669–3674 (2007). (10.1021/nl071899m) / Nano Lett. by S Bals (2007)
  45. Kubel, C. et al. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 11, 378–400 (2005). (10.1017/S1431927605050361) / Microsc. Microanal. by C Kubel (2005)
  46. Ercius, P., Weyland, M., Muller, D. A. & Gignac, L. M. Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl. Phys. Lett. 88, 243116 (2006). (10.1063/1.2213185) / Appl. Phys. Lett. by P Ercius (2006)
  47. Jeanguillaume, C. & Colliex, C. Spectrum-image: the next step in EELS digital acquisition and processing. Ultramicroscopy 28, 252–257 (1989). (10.1016/0304-3991(89)90304-5) / Ultramicroscopy by C Jeanguillaume (1989)
  48. Lavergne, J. L., Martin, J. M. & Belin, M. interactive electron-energy-loss elemental mapping by the imaging-spectrum method. Microsc. Microanal. Microstruct. 3, 517–528 (1992). (10.1051/mmm:0199200306051700) / Microsc. Microanal. Microstruct. by JL Lavergne (1992)
  49. Thomas, P. J. & Midgley, P. A. Image-spectroscopy - I. The advantages of increased spectral information for compositional EFTEM analysis. Ultramicroscopy 88, 179–186 (2001). (10.1016/S0304-3991(01)00077-8) / Ultramicroscopy by PJ Thomas (2001)
  50. Mobus, G. & Inkson, B. J. Three-dimensional reconstruction of buried nanoparticles by element-sensitive tomography based on inelastically scattered electrons. Appl. Phys. Lett. 79, 1369–1371 (2001). (10.1063/1.1400080) / Appl. Phys. Lett. by G Mobus (2001)
  51. Weyland, M. & Midgley, P. A. Extending energy-filtered transmission electron microscopy (EFTEM) into three dimensions using electron tomography. Microsc. Microanal. 9, 542–555 (2003). (10.1017/S1431927603030162) / Microsc. Microanal. by M Weyland (2003)
  52. Yurtsever, A., Weyland, M. & Muller, D. A. Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography. Appl. Phys. Lett. 89, 151920 (2006). (10.1063/1.2360906) / Appl. Phys. Lett. by A Yurtsever (2006)
  53. Gass, M. H., Koziol, K. K. K., Windle, A. H. & Midgley, P. A. 4-dimensional spectral-tomography of carbonaceous nano-composites. Nano Lett. 6, 376–379 (2006). (10.1021/nl052120g) / Nano Lett. by MH Gass (2006)
  54. Mobus, G., Doole, R. C. & Inkson, B. J. Spectroscopic electron tomography. Ultramicroscopy 96, 433–451 (2003). (10.1016/S0304-3991(03)00106-2) / Ultramicroscopy by G Mobus (2003)
  55. Yaguchi, T. et al. Elemental mapping using a dedicated FIB/STEM system. Microsc. Microanal. 10 (suppl. 2), 1030–1031 (2004). (10.1017/S1431927604881856) / Microsc. Microanal. by T Yaguchi (2004)
  56. Barnard, J. S., Sharp, J., Tong, J. R. & Midgley, P. A. High-resolution three-dimensional imaging of dislocations. Science 303, 319 (2006). (10.1126/science.1125783) / Science by JS Barnard (2006)
  57. Hata, S. et al. Electron tomography imaging and analysis of γ′ and γ domains in Ni-based superalloys. Adv. Mater. 20, 1905–1909 (2008). (10.1002/adma.200702461) / Adv. Mater. by S Hata (2008)
  58. Sharp, J. H., Barnard, J. S., Kaneko, K., Higashida, K. & Midgley, P. A. Dislocation tomography made easy: a reconstruction from ADF STEM images obtained using automated image shift correction. J. Phys. Conf. Ser. 126, 012013 (2008). (10.1088/1742-6596/126/1/012013) / J. Phys. Conf. Ser. by JH Sharp (2008)
  59. Sadan, M. B. et al. Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures. Nano Lett. 8, 891–896 (2008). (10.1021/nl073149i) / Nano Lett. by MB Sadan (2008)
  60. Jinschek, J. R. et al. 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: prospects of atomic resolution electron tomography. Ultramicroscopy 108, 589–604 (2008). (10.1016/j.ultramic.2007.10.002) / Ultramicroscopy by JR Jinschek (2008)
  61. Rodenburg, J. M., Hurst, A. C. & Cullis, A. G. Transmission microscopy without lenses for objects of unlimited size. Ultramicroscopy 107, 227–231 (2007). (10.1016/j.ultramic.2006.07.007) / Ultramicroscopy by JM Rodenburg (2007)
  62. Midgley, P. A. An introduction to electron holography. Micron 32, 167–184 (2001). (10.1016/S0968-4328(99)00105-5) / Micron by PA Midgley (2001)
  63. Gabor, D. Microscopy by reconstructed wavefronts. Proc. R. Soc. Lond. A 197, 454–487 (1949). (10.1098/rspa.1949.0075) / Proc. R. Soc. Lond. A by D Gabor (1949)
  64. Jönsson, C. Elektroneninterferenzen an mehereren künstlich hergestellten Feinspalten. Z. Phys. A 161, 454–474 (1961). (10.1007/BF01342460) / Z. Phys. A by C Jönsson (1961)
  65. Merli, P. G., Missiroli, G. F. & Pozzi, G. On the statistical aspect of electron interference phenomena. Am. J. Phys. 44, 306–307 (1976). (10.1119/1.10184) / Am. J. Phys. by PG Merli (1976)
  66. Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T. & Ezawa, H. Demonstration of single-electron build-up of an interference pattern. Am. J. Phys. 57, 117–120 (1989). (10.1119/1.16104) / Am. J. Phys. by A Tonomura (1989)
  67. Junginger, F. et al. Spin torque and heating effects in current-induced domain wall motion probed by high-resolution transmission electron microscopy. Appl. Phys. Lett. 90, 132506 (2007). (10.1063/1.2709989) / Appl. Phys. Lett. by F Junginger (2007)
  68. Bromwich, T. J. et al. Remanent magnetic states and interactions in nano-pillars. Nanotechnology 17, 4367–4373 (2006). (10.1088/0957-4484/17/17/013) / Nanotechnology by TJ Bromwich (2006)
  69. Völkl, E., Allard, L. F. & Joy, D. C. (eds) Introduction to Electron Holography (Plenum, 1998). / Introduction to Electron Holography by E Völkl (1998)
  70. Möllenstedt, G. & Düker, H. Fresnelscher Interferenzversuch mit einem Biprisma für Elektronenwellen. Naturwissenschaften 42, 41 (1955). (10.1007/BF00621530) / Naturwissenschaften by G Möllenstedt (1955)
  71. Orchowski, A., Rau, W. D. & Lichte, H. Electron holography surmounts resolution limit of electron microscopy. Phys. Rev. Lett. 74, 399–402 (1995). (10.1103/PhysRevLett.74.399) / Phys. Rev. Lett. by A Orchowski (1995)
  72. Tonomura, A. Electron Holography (Springer, 1999). (10.1007/978-3-540-37204-2) / Electron Holography by A Tonomura (1999)
  73. Osakabe, N. et al. Observation of recorded magnetization pattern by electron holography. Appl. Phys. Lett. 42, 746–748 (1983). (10.1063/1.94048) / Appl. Phys. Lett. by N Osakabe (1983)
  74. Hasegawa, S. et al. Magnetic-flux quanta in superconducting thin films observed by electron holography and digital phase analysis. Phys. Rev. B 43, 7631–7650 (1991). (10.1103/PhysRevB.43.7631) / Phys. Rev. B by S Hasegawa (1991)
  75. Bonevich, J. E. et al. Electron holography observation of vortex lattices in a superconductor. Phys. Rev. Lett. 70, 2952–2955 (1993). (10.1103/PhysRevLett.70.2952) / Phys. Rev. Lett. by JE Bonevich (1993)
  76. Tonomura, A. et al. Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792–795 (1986). (10.1103/PhysRevLett.56.792) / Phys. Rev. Lett. by A Tonomura (1986)
  77. Dunin-Borkowski, R. E. et al. Off-axis electron holography of magnetic nanowires and chains, rings and planar arrays of magnetic nanoparticles. Microsc. Res. Tech. 64, 390–402 (2004). (10.1002/jemt.20098) / Microsc. Res. Tech. by RE Dunin-Borkowski (2004)
  78. Tripp, S. L., Dunin-Borkowski, R. E. & Wei, A. Flux closure in self-assembled cobalt nanoparticle rings. Angew. Chem. 42, 5591–5593 (2003). (10.1002/anie.200352825) / Angew. Chem. by SL Tripp (2003)
  79. Harrison, R. J., Dunin-Borkowski, R. E. & Putnis, A. Direct imaging of nanoscale magnetic interactions in minerals. Proc. Natl Acad. Sci. USA 99, 16556–16561 (2002). (10.1073/pnas.262514499) / Proc. Natl Acad. Sci. USA by RJ Harrison (2002)
  80. Feinberg, J. M. et al. Effects of internal mineral structures on the magnetic remanence of silicate-hosted titanomagnetite inclusions: an electron holography study. J. Geophys. Res. 111, B12S15 (2006). / J. Geophys. Res. by JM Feinberg (2006)
  81. Dunin-Borkowski, R. E. et al. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282, 1868–1870 (1998). (10.1126/science.282.5395.1868) / Science by RE Dunin-Borkowski (1998)
  82. Kasama, T. et al. Magnetic properties, microstructure, composition and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. Am. Mineral. 91, 1216–1229 (2006). (10.2138/am.2006.2227) / Am. Mineral. by T Kasama (2006)
  83. Loudon, J. C., Mathur, N. D. & Midgley, P. A. Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3 . Nature 420, 797–800 (2002). (10.1038/nature01299) / Nature by JC Loudon (2002)
  84. Murakami, Y., Yoo, J. H., Shindo, D., Atou, T. & Kikuchi, M. Magnetization distribution in the mixed-phase state of hole-doped manganites. Nature 423, 965–968 (2003). (10.1038/nature01715) / Nature by Y Murakami (2003)
  85. Kasama, T. et al. Off-axis electron holography of pseudo-spin-valve thin film magnetic elements. J. Appl. Phys. 98, 013903 (2005). (10.1063/1.1943511) / J. Appl. Phys. by T Kasama (2005)
  86. Hu, H., Wang, H., McCartney, M. R. & Smith, D. J. Switching mechanisms and remanent states for nanoscale slotted Co circular elements studied by electron holography. Phys. Rev. B 73, 153401 (2006). (10.1103/PhysRevB.73.153401) / Phys. Rev. B by H Hu (2006)
  87. Merli, P. G., Missiroli, G. F. & Pozzi, G. P–n junction observations by interference electron microscopy. J. Microscopie 21, 11–20 (1974). / J. Microscopie by PG Merli (1974)
  88. Frabboni, S., Matteucci, G. & Pozzi, G. Observation of electrostatic fields by electron holography: the case of reversed biased p–n junctions. Ultramicroscopy 23, 29–38 (1987). (10.1016/0304-3991(87)90224-5) / Ultramicroscopy by S Frabboni (1987)
  89. Matteucci, G., Missiroli, G. F., Muccini, M. & Pozzi, G. Electron holography in the study of the electrostatic fields: the case of charged microtips. Ultramicroscopy 45, 77–83 (1992). (10.1016/0304-3991(92)90039-M) / Ultramicroscopy by G Matteucci (1992)
  90. Cumings, J., Zettl, A., McCartney, M. R. & Spence, J. C. H. Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett. 88, 056804 (2002). (10.1103/PhysRevLett.88.056804) / Phys. Rev. Lett. by J Cumings (2002)
  91. Matsumoto, T. et al. Ferroelectric 90° domain structure in a thin film of BaTiO3 fine ceramics observed by 300 kV electron holography. Appl. Phys. Lett. 92, 072902 (2008). (10.1063/1.2857469) / Appl. Phys. Lett. by T Matsumoto (2008)
  92. Rau, W. D., Schwander, P., Baumann, F. H., Höppner, W. & Ourmazd, A. Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys. Rev. Lett. 82, 2614–2617 (1999). (10.1103/PhysRevLett.82.2614) / Phys. Rev. Lett. by WD Rau (1999)
  93. Gribelyuk, M. A. et al. Mapping of electrostatic potential in deep submicron CMOS devices by electron holography. Phys. Rev. Lett. 89, 025502 (2002). (10.1103/PhysRevLett.89.025502) / Phys. Rev. Lett. by MA Gribelyuk (2002)
  94. Twitchett, A. C., Dunin-Borkowski, R. E. & Midgley, P. A. Quantitative electron holography of biased semiconductor devices. Phys. Rev. Lett. 88, 238302 (2002). (10.1103/PhysRevLett.88.238302) / Phys. Rev. Lett. by AC Twitchett (2002)
  95. Twitchett, A. C., Dunin-Borkowski, R. E., Hallifax, R. J., Broom, R. F. & Midgley, P. A. Off-axis electron holography of unbiased and reverse-biased focused ion beam milled Si p-n junctions. Microsc. Microanal. 11, 66–78 (2005). (10.1017/S1431927605050087) / Microsc. Microanal. by AC Twitchett (2005)
  96. Cooper, D., Twitchett-Harrison, A. C., Midgley, P. A. & Dunin-Borkowski, R. E. The influence of electron irradiation on electron holography of focused ion beam milled GaAs p-n junctions. J. Appl. Phys. 101, 094508 (2007). (10.1063/1.2730557) / J. Appl. Phys. by D Cooper (2007)
  97. Cooper, D. et al. Improvement in electron holographic phase images of focused-ion-beam-milled GaAs and Si p-n junctions by in situ annealing. Appl. Phys. Lett. 88, 063510 (2006). (10.1063/1.2172068) / Appl. Phys. Lett. by D Cooper (2006)
  98. Beleggia, M., Fazzini, P. F., Merli, P. G. & Pozzi, G. Influence of charged oxide layers on TEM imaging of reverse-biased p-n junctions. Phys. Rev. B 67, 045328 (2003). (10.1103/PhysRevB.67.045328) / Phys. Rev. B by M Beleggia (2003)
  99. Houben, L., Luysberg, M. & Brammer, T. Illumination effects in holographic imaging of the electrostatic potential in semiconductors in transmission electron microscopy. Phys. Rev. B 70, 165313 (2004). (10.1103/PhysRevB.70.165313) / Phys. Rev. B by L Houben (2004)
  100. Hÿtch, M. J., Houdellier, F., Hüe, F. & Snoeck, E. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086–1089 (2008). (10.1038/nature07049) / Nature by MJ Hÿtch (2008)
  101. Twitchett-Harrison, A. C., Yates, T. J. V., Newcomb, S. B., Dunin-Borkowski, R. E. & Midgley, P. A. High-resolution three-dimensional mapping of semiconductor dopant potentials. Nano Lett. 7, 2020–2023 (2007). (10.1021/nl070858n) / Nano Lett. by AC Twitchett-Harrison (2007)
  102. Kasama, T., Antypas, Y., Chong, R. K. K. & Dunin-Borkowski, R. E. in Electron Microscopy of Molecular and Atom-Scale Mechanical Behavior, Chemistry and Structure (eds Martin, D. C., Muller, D. A., Midgley, P. A. & Stach, E. A.) P5.01 (Mater. Res. Soc. Proc. 839, 2005). / Electron Microscopy of Molecular and Atom-Scale Mechanical Behavior, Chemistry and Structure by T Kasama (2005)
  103. Phatak, C., Beleggia, M. & de Graef, M. Vector field electron tomography of magnetic materials: theoretical development. Ultramicroscopy 108, 503–513 (2008). (10.1016/j.ultramic.2007.08.002) / Ultramicroscopy by C Phatak (2008)
  104. Lai, G. M. et al. 3-dimensional reconstruction of magnetic vector-fields using electron-holographic interferometry. J. Appl. Phys. 75, 4593–4598 (1994). (10.1063/1.355955) / J. Appl. Phys. by GM Lai (1994)
  105. Lade, S. J., Paganin, D. & Morgan, M. J. Electron tomography of electromagnetic fields, potentials and sources. Opt. Commun. 253, 392–400 (2005). (10.1016/j.optcom.2005.04.071) / Opt. Commun. by SJ Lade (2005)
Dates
Type When
Created 16 years, 4 months ago (March 24, 2009, 6:42 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:09 p.m.)
Indexed 6 hours, 44 minutes ago (Aug. 21, 2025, 2:12 p.m.)
Issued 16 years, 4 months ago (April 1, 2009)
Published 16 years, 4 months ago (April 1, 2009)
Published Print 16 years, 4 months ago (April 1, 2009)
Funders 0

None

@article{Midgley_2009, title={Electron tomography and holography in materials science}, volume={8}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2406}, DOI={10.1038/nmat2406}, number={4}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Midgley, Paul A. and Dunin-Borkowski, Rafal E.}, year={2009}, month=apr, pages={271–280} }