Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Wu, C. J., Söderlind, P., Glosli, J. N., & Klepeis, J. E. (2009). Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting. Nature Materials, 8(3), 223–228.

Authors 4
  1. Christine J. Wu (first)
  2. Per Söderlind (additional)
  3. James N. Glosli (additional)
  4. John E. Klepeis (additional)
References 47 Referenced 70
  1. Errandonea, D. et al. Systematics of transition-metal melting. Phys. Rev. B. 63, 132104 (2001). (10.1103/PhysRevB.63.132104) / Phys. Rev. B. by D Errandonea (2001)
  2. Errandonea, D., Somayazulu, M., Hausermann, D. & Mao, H. K. Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell. J. Phys. Condens. Matter 15, 7635–7649 (2003). (10.1088/0953-8984/15/45/003) / J. Phys. Condens. Matter by D Errandonea (2003)
  3. Errandonea, D. Improving the understanding of the melting behaviour of Mo, Ta and W at extreme pressures. Physica B 357, 356–364 (2005). (10.1016/j.physb.2004.11.087) / Physica B by D Errandonea (2005)
  4. Errandonea, D. Phase behavior of metals at very high P–T conditions: A review of recent experimental studies. J. Phys. Chem. Solids 67, 2017–2027 (2006). (10.1016/j.jpcs.2006.05.031) / J. Phys. Chem. Solids by D Errandonea (2006)
  5. Errandonea, D., Boehler, R. & Ross, M. Melting of the alkaline-earth metals to 80 GPa. Phys. Rev. B 65, 012108 (2001). (10.1103/PhysRevB.65.012108) / Phys. Rev. B by D Errandonea (2001)
  6. Boehler, R., Santamaría-Pérez, D., Errandonea, D. & Mezouar, M. Melting, density, and anisotropy of iron at core conditions: New X-ray measurements to 150 GPa. J. Phys. Conf. Ser. 121, 022018 (2008). (10.1088/1742-6596/121/2/022018) / J. Phys. Conf. Ser. by R Boehler (2008)
  7. Boehler, R. & Ross, M. Melting curve of aluminum in a diamond cell to 0.8 Mbar: Implications for iron. Earth Planet. Sci. Lett. 153, 223–227 (1997). (10.1016/S0012-821X(97)00188-X) / Earth Planet. Sci. Lett. by R Boehler (1997)
  8. Japel, S., Schwager, B., Boehler, R. & Ross, M. Melting of copper and nickel at high pressure: The role of d electrons. Phys. Rev. Lett. 95, 167801 (2005). (10.1103/PhysRevLett.95.167801) / Phys. Rev. Lett. by S Japel (2005)
  9. Dewaele, A., Mezouar, M., Guignot, N. & Loubeyre, P. Melting of lead under high pressure studied using second-scale time-resolved x-ray diffraction. Phys. Rev. B. 76, 144106 (2007). (10.1103/PhysRevB.76.144106) / Phys. Rev. B. by A Dewaele (2007)
  10. Brown, J. M. & Shaner, J. W. in Shock Waves in Condensed Matter—1983 (eds Asay, J. A., Graham, R. A. & Straub, G. K.) (North-Holland, 1984). / Shock Waves in Condensed Matter—1983 by JM Brown (1984)
  11. Fateeva, N. S. & Vereshchagin, L. F. Melting curve of tantalum up to 60 kbar. Sov. Phys. 16, 322–323 (1971). / Sov. Phys. by NS Fateeva (1971)
  12. Wang, Y., Ahuja, R. & Johnsson, B. Melting of iron and other metals at earth’s core conditions: A simplified computational approach. Phys. Rev. B 65, 014104 (2001). (10.1103/PhysRevB.65.014104) / Phys. Rev. B by Y Wang (2001)
  13. Verma, A. K., Rao, R. & Godwal, B. K. Theoretical solid and liquid state shock hugoniots of Al, Ta, Mo and W. J. Phys. Condens. Matter 16, 4799–4809 (2002). (10.1088/0953-8984/16/28/004) / J. Phys. Condens. Matter by AK Verma (2002)
  14. Taioli, S., Cazorla, C., Gillan, M. J & Alfè, D. Melting curve of tantalum from first principles. Phys. Rev. B 75, 214103 (2007). (10.1103/PhysRevB.75.214103) / Phys. Rev. B by S Taioli (2007)
  15. Luo, S. & Swift, D. C. On high-pressure melting of tantalum. Physica B 388, 139–144 (2007). (10.1016/j.physb.2006.05.425) / Physica B by S Luo (2007)
  16. Liu, Z. L., Cai, L. C., Chen, X. R. & Jing, F. Q. Molecular dynamics simulations of the melting curve of tantalum under pressure. Phys. Rev. B 77, 024103 (2008). (10.1103/PhysRevB.77.024103) / Phys. Rev. B by ZL Liu (2008)
  17. Xi, F. & Cai, L. Theoretical study of melting curves on Ta, Mo and W at high pressures. Physica B 403, 2065–2070 (2008). (10.1016/j.physb.2007.11.027) / Physica B by F Xi (2008)
  18. Belonoshko, A. B. et al. Molybdenum at high pressure and temperature: Melting from another solid phase. Phys. Rev. Lett. 100, 135701 (2008). (10.1103/PhysRevLett.100.135701) / Phys. Rev. Lett. by AB Belonoshko (2008)
  19. Hixson, R.A., Boness, D.A., Shaner, J.W. & Moriarty, J. A. Acoustic velocities and phase transitions in molybdenum under strong shock compression. Phys. Rev. Lett. 62, 637–640 (1989). (10.1103/PhysRevLett.62.637) / Phys. Rev. Lett. by RA Hixson (1989)
  20. Belonoshko, A. B. & Dubrovinsky, L. S. A simulation study of induced failure and recrystallization of a perfect MgO crystal under non-hydrostatic compression: Application to melting in the diamond-anvil cell. Am. Mineral. 82, 441–451 (1997). (10.2138/am-1997-5-601) / Am. Mineral. by AB Belonoshko (1997)
  21. Ross, M., Errandonea, D. & Boehler, R. Melting of transition metals at high pressure and the influence of liquid frustration: The early metals Ta and Mo. Phys. Rev. B 76, 184118 (2007). (10.1103/PhysRevB.76.184118) / Phys. Rev. B by M Ross (2007)
  22. Jakse, N., Le Bacq, O. & Pasturel, A. Predication of the local structure of liquid and supercooled tantalum. Phys. Rev. B 70, 174203 (2004). (10.1103/PhysRevB.70.174203) / Phys. Rev. B by N Jakse (2004)
  23. Wolf, D., Okamoto, P. R., Yip, S., Lutsko, J. F. & Kluge, M. Thermodynamic parallels between solid-state amorphization and melting. J. Mater. Res. 5, 286–301 (1990). (10.1557/JMR.1990.0286) / J. Mater. Res. by D Wolf (1990)
  24. Belonoshko, A. B., Ahuja, R. & Johansson, B. Molecular dynamics of LiF melting. Phys. Rev. B 61, 11928–11935 (2000). (10.1103/PhysRevB.61.11928) / Phys. Rev. B by AB Belonoshko (2000)
  25. Fiquet, G, Andrault, D., Itié, J. P., Gillet, P. & Richet, P. X-ray diffraction of periclase in a laser-heated diamond-anvil cell. Phys. Earth Planet. Inter. 95, 1–17 (1996). (10.1016/0031-9201(95)03109-X) / Phys. Earth Planet. Inter. by G Fiquet (1996)
  26. Vinod, K., Malik, V. S., Sharma, S. K. & Srivastava, S. K. Temperature dependence of thermal pressure of NaCl and KCl crystals. J. Phys. Chem. Solids 68, 32–35 (2007). (10.1016/j.jpcs.2006.09.003) / J. Phys. Chem. Solids by K Vinod (2007)
  27. Foata-Prestavoine, M., Robert, G., Nadal, M. H. & Bernard, S. First-principles study of the relations between the elastic constants, phonon dispersion curves, and melting temperatures of b.c.c. Ta at pressures up to 1000 GPa. Phys. Rev. B 76, 104104 (2007). (10.1103/PhysRevB.76.104104) / Phys. Rev. B by M Foata-Prestavoine (2007)
  28. Gulseren, O. & Cohen, R. E. High-pressure thermoelasticity of body-centred-cubic tantalum. Phys. Rev. B 65, 064103 (2002). (10.1103/PhysRevB.65.064103) / Phys. Rev. B by O Gulseren (2002)
  29. Orlikowski, D., Soderlind, P. & Moriarty, J. A. First-principles thermoelasticity of transition metals at high pressure: Tantalum prototype in the quasiharmonic limit. Phys. Rev. B 74, 054109 (2006). (10.1103/PhysRevB.74.054109) / Phys. Rev. B by D Orlikowski (2006)
  30. Butler, S. & Harrowell, P. The shear-induced disordering transition in a colloidal crystal: Nonequilibrium Brownian dynamic simulations. J. Chem. Phys. 103, 4653–4671 (1995). / J. Chem. Phys. by S Butler (1995)
  31. King, R. P. Introduction to Practical Fluid Flow 117 (Butterworth-Heinemann, 2002). (10.1016/B978-075064885-1/50005-3) / Introduction to Practical Fluid Flow by RP King (2002)
  32. Bingham, E. C. An investigation of the laws of plastic flow. US Bureau of Standards Bulletin 13, 309–353 (1916). (10.6028/bulletin.304) / US Bureau of Standards Bulletin by EC Bingham (1916)
  33. Moriarty, J. A. et al. Quantum-based atomistic simulation of materials properties in transition metals. J. Phys. Condens. Matter 14, 2825–2857 (2002). (10.1088/0953-8984/14/11/305) / J. Phys. Condens. Matter by JA Moriarty (2002)
  34. Moriarty, J. A. et al. Supplemental Proceedings: Volume 1: Minerals, Metals and Materials under Pressure for the 2008 TMS Annual Meeting, New Orleans, LA, 313.
  35. Hirth, J. P & Lothe, J. Theory of Dislocation 275 (Krieger, 1992). / Theory of Dislocation by JP Hirth (1992)
  36. Burgers, W. G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1, 561–586 (1934). (10.1016/S0031-8914(34)80244-3) / Physica by WG Burgers (1934)
  37. Szczgielska, A., Burian, A., Duber, S., Dore, J. C. & Honkimaki, V. Radial distribution function analysis of the graphitization process in carbon materials. J. Alloys Compounds 328, 231–236 (2001). (10.1016/S0925-8388(01)01694-2) / J. Alloys Compounds by A Szczgielska (2001)
  38. Jaime, M., Cai, W. & Bulatov, V. V. Dynamic transitions from smooth to rough to twinning in dislocation motion. Nature Mater. 3, 158–163 (2004). (10.1038/nmat1072) / Nature Mater. by M Jaime (2004)
  39. Wang, Y. et al. Amorphouslike diffraction pattern in solid metallic titanium. Phys. Rev. Lett. 95, 155501 (2005). (10.1103/PhysRevLett.95.155501) / Phys. Rev. Lett. by Y Wang (2005)
  40. Hattori, T. et al. Does bulk metallic glass of elemental Zr and Ti exist? Phys. Rev. Lett. 96, 255504 (2006). (10.1103/PhysRevLett.96.255504) / Phys. Rev. Lett. by T Hattori (2006)
  41. Streitz, F. H., Glosli, J. N. & Patel, M. V. Beyond finite-size scaling in solidification simulations. Phys. Rev. Lett. 96, 225701 (2006). (10.1103/PhysRevLett.96.225701) / Phys. Rev. Lett. by FH Streitz (2006)
  42. Rodney, D. & Martin, G. Dislocation pinning by small interstitial loops: A molecular dynamics study. Phys. Rev. Lett. 82, 3272–3275 (1999). (10.1103/PhysRevLett.82.3272) / Phys. Rev. Lett. by D Rodney (1999)
  43. Allen, M. P. & Tildesley, D. J. Computer Simulations of Liquids (Clarendon, 1987.). / Computer Simulations of Liquids by MP Allen (1987)
  44. Gonze, X. et al. First-principles computation of material properties: The ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002). (10.1016/S0927-0256(02)00325-7) / Comput. Mater. Sci. by X Gonze (2002)
  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  46. Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991). (10.1103/PhysRevB.43.1993) / Phys. Rev. B by N Troullier (1991)
  47. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). (10.1103/PhysRevB.13.5188) / Phys. Rev. B by HJ Monkhorst (1976)
Dates
Type When
Created 16 years, 6 months ago (Jan. 25, 2009, 1:16 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 2:56 p.m.)
Indexed 1 year, 2 months ago (May 23, 2024, 5:55 p.m.)
Issued 16 years, 6 months ago (Jan. 25, 2009)
Published 16 years, 6 months ago (Jan. 25, 2009)
Published Online 16 years, 6 months ago (Jan. 25, 2009)
Published Print 16 years, 5 months ago (March 1, 2009)
Funders 0

None

@article{Wu_2009, title={Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting}, volume={8}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2375}, DOI={10.1038/nmat2375}, number={3}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Wu, Christine J. and Söderlind, Per and Glosli, James N. and Klepeis, John E.}, year={2009}, month=jan, pages={223–228} }