Crossref
journal-article
Springer Science and Business Media LLC
Nature Materials (297)
References
80
Referenced
14,746
-
Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer, 1999).
(
10.1007/978-1-4757-3058-6
) / Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications by BE Conway (1999) -
Service, R. F. New 'supercapacitor' promises to pack more electrical punch. Science 313, 902–905 (2006).
(
10.1126/science.313.5789.902
) / Science by RF Service (2006) -
Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
(
10.1038/35104644
) / Nature by J-M Tarascon (2001) -
Brodd, R. J. et al. Batteries, 1977 to 2002. J. Electrochem. Soc. 151, K1–K11 (2004).
(
10.1149/1.1641042
) / J. Electrochem. Soc. by RJ Brodd (2004) -
Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).
(
10.1038/451652a
) / Nature by M Armand (2008) -
Armand, M. & Johansson, P. Novel weakly coordinating heterocyclic anions for use in lithium batteries. J. Power Sources 178, 821–825 (2008).
(
10.1016/j.jpowsour.2007.08.062
) / J. Power Sources by M Armand (2008) -
Miller, J. R. & Simon, P. Electrochemical capacitors for energy management. Science 321, 651–652 (2008).
(
10.1126/science.1158736
) / Science by JR Miller (2008) - US Department of Energy. Basic Research Needs for Electrical Energy Storage <www.sc.doe.gov/bes/reports/abstracts.html#EES2007> (2007).
-
Kötz, R. & Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000).
(
10.1016/S0013-4686(00)00354-6
) / Electrochim. Acta by R Kötz (2000) -
Miller, J. R. & Burke, A. F. Electrochemical capacitors: Challenges and opportunities for real-world applications. Electrochem. Soc. Interf. 17, 53–57 (2008).
(
10.1149/2.F08081IF
) / Electrochem. Soc. Interf. by JR Miller (2008) -
Pandolfo, A. G. & Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006).
(
10.1016/j.jpowsour.2006.02.065
) / J. Power Sources by AG Pandolfo (2006) -
Gogotsi, Y. (ed.) Carbon Nanomaterials (CRC, 2006).
(
10.1201/9781420009378
) / Carbon Nanomaterials by Y Gogotsi (2006) - Kyotani, T., Chmiola, J. & Gogotsi, Y. in Carbon Materials for Electrochemical Energy Storage Systems (eds Beguin, F. & Frackowiak, E.) Ch. 13 (CRC/Taylor and Francis, in the press).
-
Futaba, D. N. et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Mater. 5, 987–994 (2006).
(
10.1038/nmat1782
) / Nature Mater. by DN Futaba (2006) -
Portet, C., Chmiola, J., Gogotsi, Y., Park, S. & Lian, K. Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochim. Acta, 53, 7675–7680 (2008).
(
10.1016/j.electacta.2008.05.019
) / Electrochim. Acta by C Portet (2008) -
Yang, C.-M. et al. Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J. Am. Chem. Soc. 129, 20–21 (2007).
(
10.1021/ja065501k
) / J. Am. Chem. Soc. by C-M Yang (2007) -
Niu, C., Sichel, E. K., Hoch, R., Moy, D. & Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480 (1997).
(
10.1063/1.118568
) / Appl. Phys. Lett. by C Niu (1997) -
Azaïs, P. et al. Causes of supercapacitors ageing in organic electrolyte. J. Power Sources 171, 1046–1053 (2007).
(
10.1016/j.jpowsour.2007.07.001
) / J. Power Sources by P Azaïs (2007) -
Gamby, J., Taberna, P. L., Simon, P., Fauvarque, J. F. & Chesneau, M. Studies and characterization of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109–116 (2001).
(
10.1016/S0378-7753(01)00707-8
) / J. Power Sources by J Gamby (2001) -
Shi, H. Activated carbons and double layer capacitance. Electrochim. Acta 41, 1633–1639 (1995).
(
10.1016/0013-4686(95)00416-5
) / Electrochim. Acta by H Shi (1995) -
Qu, D. & Shi, H. Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99–107 (1998).
(
10.1016/S0378-7753(98)00038-X
) / J. Power Sources by D Qu (1998) -
Qu, D. Studies of the activated carbons used in double-layer supercapacitors. J. Power Sources 109, 403–411 (2002).
(
10.1016/S0378-7753(02)00108-8
) / J. Power Sources by D Qu (2002) -
Kim, Y. J. et al. Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon 42, 1491 (2004).
(
10.1016/j.carbon.2004.01.049
) / Carbon by YJ Kim (2004) -
Izutsu, K. Electrochemistry in Nonaqueous Solution (Wiley, 2002).
(
10.1002/3527600655
) / Electrochemistry in Nonaqueous Solution by K Izutsu (2002) - Marcus, Y. Ion Solvation (Wiley, 1985). / Ion Solvation by Y Marcus (1985)
-
Jurewicz, K. et al. Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J. Phys. Chem. Solids 65, 287 (2004).
(
10.1016/j.jpcs.2003.10.024
) / J. Phys. Chem. Solids by K Jurewicz (2004) -
Fernández, J. A. et al. Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J. Power Sources 175, 675 (2008).
(
10.1016/j.jpowsour.2007.09.042
) / J. Power Sources by JA Fernández (2008) -
Fuertes, A. B., Lota, G., Centeno, T. A. & Frackowiak, E. Templated mesoporous carbons for supercapacitor application. Electrochim. Acta 50, 2799 (2005).
(
10.1016/j.electacta.2004.11.027
) / Electrochim. Acta by AB Fuertes (2005) -
Salitra, G., Soffer, A., Eliad, L., Cohen, Y. & Aurbach, D. Carbon electrodes for double-layer capacitors. I. Relations between ion and pore dimensions. J. Electrochem. Soc. 147, 2486–2493 (2000).
(
10.1149/1.1393557
) / J. Electrochem. Soc. by G Salitra (2000) -
Vix-Guterl, C. et al. Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293–1302 (2005).
(
10.1016/j.carbon.2004.12.028
) / Carbon by C Vix-Guterl (2005) -
Eliad, L., Salitra, G., Soffer, A. & Aurbach, D. On the mechanism of selective electroadsorption of protons in the pores of carbon molecular sieves. Langmuir 21, 3198–3202 (2005).
(
10.1021/la049238h
) / Langmuir by L Eliad (2005) -
Eliad, L. et al. Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidene chloride) carbons for EDL capacitors. Appl. Phys. A 82, 607–613 (2006).
(
10.1007/s00339-005-3440-9
) / Appl. Phys. A by L Eliad (2006) -
Arulepp, M. et al. The advanced carbide-derived carbon based supercapacitor. J. Power Sources 162, 1460–1466 (2006).
(
10.1016/j.jpowsour.2006.08.014
) / J. Power Sources by M Arulepp (2006) -
Arulepp, M. et al. Influence of the solvent properties on the characteristics of a double layer capacitor. J. Power Sources 133, 320–328 (2004).
(
10.1016/j.jpowsour.2004.03.026
) / J. Power Sources by M Arulepp (2004) -
Raymundo-Pinero, E., Kierzek, K., Machnikowski, J. & Beguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44, 2498–2507 (2006).
(
10.1016/j.carbon.2006.05.022
) / Carbon by E Raymundo-Pinero (2006) -
Janes, A. & Lust, E. Electrochemical characteristics of nanoporous carbide-derived carbon materials in various nonaqueous electrolyte solutions. J. Electrochem. Soc. 153, A113–A116 (2006).
(
10.1149/1.2135212
) / J. Electrochem. Soc. by A Janes (2006) -
Shanina, B. D. et al. A study of nanoporous carbon obtained from ZC powders (Z = Si, Ti, and B). Carbon 41, 3027–3036 (2003).
(
10.1016/S0008-6223(03)00429-9
) / Carbon by BD Shanina (2003) -
Chmiola, J., Dash, R., Yushin, G. & Gogotsi, Y. Effect of pore size and surface area of carbide derived carbon on specific capacitance. J. Power Sources 158, 765–772 (2006).
(
10.1016/j.jpowsour.2005.09.008
) / J. Power Sources by J Chmiola (2006) -
Dash, R. et al. Titanium carbide derived nanoporous carbon for energy-related applications. Carbon 44, 2489–2497 (2006).
(
10.1016/j.carbon.2006.04.035
) / Carbon by R Dash (2006) -
Urbonaite, S. et al. EELS studies of carbide derived carbons. Carbon 45, 2047–2053 (2007).
(
10.1016/j.carbon.2007.05.022
) / Carbon by S Urbonaite (2007) -
Gogotsi, Y. et al. Nanoporous carbide-derived carbon with tunable pore size. Nature Mater. 2, 591–594 (2003).
(
10.1038/nmat957
) / Nature Mater. by Y Gogotsi (2003) -
Chmiola, J. et al. Anomalous increase in carbon capacitance at pore size below 1 nm. Science 313, 1760–1763 (2006).
(
10.1126/science.1132195
) / Science by J Chmiola (2006) -
Huang, J. S., Sumpter, B. G. & Meunier, V. Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47, 520–524 (2008).
(
10.1002/anie.200703864
) / Angew. Chem. Int. Ed. by JS Huang (2008) -
Huang, J., Sumpter, B. G. & Meunier, V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbons, and electrolytes. Chem. Eur. J. 14, 6614–6626 (2008).
(
10.1002/chem.200800639
) / Chem. Eur. J. by J Huang (2008) -
Chmiola, J., Largeot, C., Taberna, P.-L., Simon, P. & Gogotsi, Y. Desolvation of ions in subnanometer pores, its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. 47, 3392–3395 (2008).
(
10.1002/anie.200704894
) / Angew. Chem. Int. Ed. by J Chmiola (2008) -
Largeot, C. et al. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008).
(
10.1021/ja7106178
) / J. Am. Chem. Soc. by C Largeot (2008) - Weigand, G., Davenport, J. W., Gogotsi, Y. & Roberto, J. in Scientific Impacts and Opportunities for Computing Ch. 5, 29–35 (DOE Office of Science, 2008). / Scientific Impacts and Opportunities for Computing by G Weigand (2008)
-
Wu, N.-L. Nanocrystalline oxide supercapacitors. Mater. Chem. Phys. 75, 6–11 (2002).
(
10.1016/S0254-0584(02)00022-6
) / Mater. Chem. Phys. by N-L Wu (2002) -
Brousse, T. et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 153, A2171–A2180 (2006).
(
10.1149/1.2352197
) / J. Electrochem. Soc. by T Brousse (2006) -
Rudge, A., Raistrick, I., Gottesfeld, S. & Ferraris, J. P. Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47, 89–107 (1994).
(
10.1016/0378-7753(94)80053-7
) / J. Power Sources by A Rudge (1994) -
Zheng, J. P. & Jow, T. R. High energy and high power density electrochemical capacitors. J. Power Sources 62, 155–159 (1996).
(
10.1016/S0378-7753(96)02424-X
) / J. Power Sources by JP Zheng (1996) -
Lee, H. Y. & Goodenough, J. B. Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220–223 (1999).
(
10.1006/jssc.1998.8128
) / J. Solid State Chem. by HY Lee (1999) -
Laforgue, A., Simon, P. & Fauvarque, J.-F. Chemical synthesis and characterization of fluorinated polyphenylthiophenes: application to energy storage. Synth. Met. 123, 311–319 (2001).
(
10.1016/S0379-6779(01)00296-X
) / Synth. Met. by A Laforgue (2001) -
Naoi, K., Suematsu, S. & Manago, A. Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials. J. Electrochem. Soc. 147, 420–426 (2000).
(
10.1149/1.1393212
) / J. Electrochem. Soc. by K Naoi (2000) -
Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).
(
10.1038/nmat1368
) / Nature Mater. by AS Arico (2005) -
Choi, D., Blomgren, G. E. & Kumta, P. N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178–1182 (2006).
(
10.1002/adma.200502471
) / Adv. Mater. by D Choi (2006) -
Machida, K., Furuuchi, K., Min, M. & Naoi, K. Mixed proton–electron conducting nanocomposite based on hydrous RuO2 and polyaniline derivatives for supercapacitors. Electrochemistry 72, 402–404 (2004).
(
10.5796/electrochemistry.72.402
) / Electrochemistry by K Machida (2004) -
Toupin, M., Brousse, T. & Belanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004).
(
10.1021/cm049649j
) / Chem. Mater. by M Toupin (2004) -
Sugimoto, W., Iwata, H., Yasunaga, Y., Murakami, Y. & Takasu, Y. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew. Chem. Int. Ed. 42, 4092–4096 (2003).
(
10.1002/anie.200351691
) / Angew. Chem. Int. Ed. by W Sugimoto (2003) -
Miller, J. M., Dunn, B., Tran, T. D. & Pekala, R. W. Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J. Electrochem. Soc. 144, L309–L311 (1997).
(
10.1149/1.1838142
) / J. Electrochem. Soc. by JM Miller (1997) -
Min, M., Machida, K., Jang, J. H. & Naoi, K. Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. J. Electrochem. Soc. 153, A334–A338 (2006).
(
10.1149/1.2140677
) / J. Electrochem. Soc. by M Min (2006) -
Wang, Y., Takahashi, K., Lee, K. H. & Cao, G. Z. Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv. Funct. Mater. 16, 1133–1144 (2006).
(
10.1002/adfm.200500662
) / Adv. Funct. Mater. by Y Wang (2006) -
Naoi, K. & Simon, P. New materials and new configurations for advanced electrochemical capacitors. Electrochem. Soc. Interf. 17, 34–37 (2008).
(
10.1149/2.F04081IF
) / Electrochem. Soc. Interf. by K Naoi (2008) -
Fischer, A. E., Pettigrew, K. A., Rolison, D. R., Stroud, R. M. & Long, J. W. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett. 7, 281–286 (2007).
(
10.1021/nl062263i
) / Nano Lett. by AE Fischer (2007) -
Kazaryan, S. A., Razumov, S. N., Litvinenko, S. V., Kharisov, G. G. & Kogan, V. I. Mathematical model of heterogeneous electrochemical capacitors and calculation of their parameters. J. Electrochem. Soc. 153, A1655–A1671 (2006).
(
10.1149/1.2212057
) / J. Electrochem. Soc. by SA Kazaryan (2006) - Amatucci, G. G., Badway, F. & DuPasquier, A. in Intercalation Compounds for Battery Materials (ECS Proc. Vol. 99) 344–359 (Electrochemical Society, 2000). / Intercalation Compounds for Battery Materials by GG Amatucci (2000)
-
Burke, A. R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 53, 1083–1091 (2007).
(
10.1016/j.electacta.2007.01.011
) / Electrochim. Acta by A Burke (2007) -
Portet, C., Taberna, P. L., Simon, P. & Laberty-Robert, C. Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications. Electrochim. Acta 49, 905–912 (2004).
(
10.1016/j.electacta.2003.09.043
) / Electrochim. Acta by C Portet (2004) -
Talapatra, S. et al. Direct growth of aligned carbon nanotubes on bulk metals. Nature Nanotech. 1, 112–116 (2006).
(
10.1038/nnano.2006.56
) / Nature Nanotech. by S Talapatra (2006) -
Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567–573 (2006).
(
10.1038/nmat1672
) / Nature Mater. by L Taberna (2006) -
Jang, J. H., Machida, K., Kim, Y. & Naoi, K. Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances. Electrochim. Acta. 52, 1733 (2006).
(
10.1016/j.electacta.2006.01.075
) / Electrochim. Acta. by JH Jang (2006) -
Cambaz, Z. G., Yushin, G., Osswald, S., Mochalin, V. & Gogotsi, Y. Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 46, 841–849 (2008).
(
10.1016/j.carbon.2008.02.013
) / Carbon by ZG Cambaz (2008) -
Tsuda, T. & Hussey, C. L. Electrochemical applications of room-temperature ionic liquids. Electrochem. Soc. Interf. 16, 42–49 (2007).
(
10.1149/2.F05071IF
) / Electrochem. Soc. Interf. by T Tsuda (2007) -
Balducci, A. et al. High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources 165, 922–927 (2007).
(
10.1016/j.jpowsour.2006.12.048
) / J. Power Sources by A Balducci (2007) -
Balducci, A. et al. Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. Electrochim. Acta 50, 2233–2237 (2005).
(
10.1016/j.electacta.2004.10.006
) / Electrochim. Acta by A Balducci (2005) -
Balducci, A., Soavi, F. & Mastragostino, M. The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors. Appl. Phys. A 82, 627–632 (2006).
(
10.1007/s00339-005-3402-2
) / Appl. Phys. A by A Balducci (2006) -
Endres, F., MacFarlane, D. & Abbott, A. (eds) Electrodeposition from Ionic Liquids (Wiley-VCH, 2008).
(
10.1002/9783527622917
) / Electrodeposition from Ionic Liquids by F Endres (2008) -
Faggioli, E. et al. Supercapacitors for the energy management of electric vehicles. J. Power Sources 84, 261–269 (1999).
(
10.1016/S0378-7753(99)00326-2
) / J. Power Sources by E Faggioli (1999) - Chmiola, J. & Gogotsi, Y. Supercapacitors as advanced energy storage devices. Nanotechnol. Law Bus. 4, 577–584 (2007). / Nanotechnol. Law Bus. by J Chmiola (2007)
-
Portet, C., Yushin, G. & Gogotsi, Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007).
(
10.1016/j.carbon.2007.08.024
) / Carbon by C Portet (2007)
Dates
Type | When |
---|---|
Created | 16 years, 9 months ago (Oct. 28, 2008, 1:38 a.m.) |
Deposited | 3 years, 1 month ago (July 6, 2022, 3:30 p.m.) |
Indexed | 2 hours, 9 minutes ago (Aug. 22, 2025, 12:48 a.m.) |
Issued | 16 years, 9 months ago (Nov. 1, 2008) |
Published | 16 years, 9 months ago (Nov. 1, 2008) |
Published Print | 16 years, 9 months ago (Nov. 1, 2008) |
@article{Simon_2008, title={Materials for electrochemical capacitors}, volume={7}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2297}, DOI={10.1038/nmat2297}, number={11}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Simon, Patrice and Gogotsi, Yury}, year={2008}, month=nov, pages={845–854} }