Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J., & Wuttig, M. (2008). Resonant bonding in crystalline phase-change materials. Nature Materials, 7(8), 653–658.

Authors 6
  1. Kostiantyn Shportko (first)
  2. Stephan Kremers (additional)
  3. Michael Woda (additional)
  4. Dominic Lencer (additional)
  5. John Robertson (additional)
  6. Matthias Wuttig (additional)
References 34 Referenced 1,025
  1. Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nature Mater. 6, 824–832 (2007). (10.1038/nmat2009) / Nature Mater. by M Wuttig (2007)
  2. Welnic, W., Botti, S., Reining, L. & Wuttig, M. Origin of the optical contrast in phase-change materials. Phys. Rev. Lett. 98, 236403 (2007). (10.1103/PhysRevLett.98.236403) / Phys. Rev. Lett. by W Welnic (2007)
  3. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968). (10.1103/PhysRevLett.21.1450) / Phys. Rev. Lett. by SR Ovshinsky (1968)
  4. Lankhorst, M. H. R., Ketelaars, B. W. S. M. M. & Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005). (10.1038/nmat1350) / Nature Mater. by MHR Lankhorst (2005)
  5. Lacaita, A. L. & Wouters, D. in Nanotechnology Vol. 3 (ed. Waser, R.) (Wiley–VCH, Weinheim, 2008). / Nanotechnology by AL Lacaita (2008)
  6. Ielmini, D. & Zhang, Y. G. Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. J. Appl. Phys. 102, 054517 (2007). (10.1063/1.2773688) / J. Appl. Phys. by D Ielmini (2007)
  7. Lee, B. S. et al. Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J. Appl. Phys. 97, 093509 (2005). (10.1063/1.1884248) / J. Appl. Phys. by BS Lee (2005)
  8. Mendoza-Galvan, A. & Gonzalez-Hernandez, J. Drude-like behavior of Ge:Sb:Te alloys in the infrared. J. Appl. Phys. 87, 760–765 (2000). (10.1063/1.371937) / J. Appl. Phys. by A Mendoza-Galvan (2000)
  9. Luo, M. B. & Wuttig, M. The dependence of crystal structure of Te-based phase-change materials on the number of valence electrons. Adv. Mater. 16, 439–443 (2004). (10.1002/adma.200306077) / Adv. Mater. by MB Luo (2004)
  10. Yamada, N. & Matsunaga, T. Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020–7028 (2000). (10.1063/1.1314323) / J. Appl. Phys. by N Yamada (2000)
  11. Jellison, G. E. Spectroscopic ellipsometry data analysis: Measured versus calculated quantities. Thin Solid Films 313, 33–39 (1998). (10.1016/S0040-6090(97)00765-7) / Thin Solid Films by GE Jellison (1998)
  12. Ashcroft, N. & Mermin, D. Solid State Physics 542 (Holt-Saunders, Philadelphia, 1976). / Solid State Physics by N Ashcroft (1976)
  13. Levine, B. F. Bond susceptibilities and ionicities in complex crystal-structures. J. Chem. Phys. 59, 1463–1486 (1973). (10.1063/1.1680204) / J. Chem. Phys. by BF Levine (1973)
  14. Olsen, J. K., Li, H. & Taylor, P. C. On the structure of GexSbyTe1−x−y glasses. J. Ovonics Res. 1, 1–6 (2005). / J. Ovonics Res. by JK Olsen (2005)
  15. Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703–708 (2004). (10.1038/nmat1215) / Nature Mater. by AV Kolobov (2004)
  16. Baker, D. A., Paesler, M. A., Lucovsky, G., Agarwal, S. C. & Taylor, P. C. Application of bond constraint theory to the switchable optical memory material Ge2Sb2Te5 . Phys. Rev. Lett. 96, 255501 (2006). (10.1103/PhysRevLett.96.255501) / Phys. Rev. Lett. by DA Baker (2006)
  17. Jovari, P. et al. Local order in amorphous Ge2Sb2Te5 and Ge1Sb2Te4 . Phys. Rev. B 77, 035202 (2008). (10.1103/PhysRevB.77.035202) / Phys. Rev. B by P Jovari (2008)
  18. Rabe, K. M. & Joannopoulos, J. D. Structural properties of GeTe at T=0. Phys. Rev. B 36, 3319–3324 (1987). (10.1103/PhysRevB.36.3319) / Phys. Rev. B by KM Rabe (1987)
  19. Robertson, J., Xiong, K. & Peacock, P. W. Electronic and atomic structure of Ge2Sb2Te5 phase change memory material. Thin Solid Films 515, 7538–7541 (2007). (10.1016/j.tsf.2006.11.159) / Thin Solid Films by J Robertson (2007)
  20. Peierls, R. E. Quantum Theory of Solids (Oxford Univ. Press, Oxford, 1956). / Quantum Theory of Solids by RE Peierls (1956)
  21. Gaspard, J. P. & Ceolin, R. Hume-Rothery rule in V–VI compounds. Solid State Commun. 84, 839–842 (1992). (10.1016/0038-1098(92)90102-F) / Solid State Commun. by JP Gaspard (1992)
  22. Wuttig, M. et al. The role of vacancies and local distortions in the design of new phase-change materials. Nature Mater. 6, 122–127 (2007). (10.1038/nmat1807) / Nature Mater. by M Wuttig (2007)
  23. Pauling, L. Nature of Chemical Bond (Cornell Univ. Press, New York, 1939). / Nature of Chemical Bond by L Pauling (1939)
  24. Littlewood, P. B. The crystal structure of IV–VI compounds: I. Classification and description. J. Phys. C 13, 4855–4873 (1980). (10.1088/0022-3719/13/26/009) / J. Phys. C by PB Littlewood (1980)
  25. Littlewood, P. B. Dielectric-constant of cubic IV–VI compounds. J. Phys. C 12, 4459–4468 (1979). (10.1088/0022-3719/12/21/013) / J. Phys. C by PB Littlewood (1979)
  26. Lucovsky, G. & White, R. M. Effects of resonance bonding on properties of crystalline and amorphous semiconductors. Phys. Rev. B 8, 660–667 (1973). (10.1103/PhysRevB.8.660) / Phys. Rev. B by G Lucovsky (1973)
  27. Robertson, J. New model for structure of amorphous selenium. Phil. Mag. 34, 13–31 (1976). (10.1080/14786437608228171) / Phil. Mag. by J Robertson (1976)
  28. Joannopoulos, J. D., Schluter, M. & Cohen, M. L. Electronic-structure of trigonal and amorphous Se and Te. Phys. Rev. B 11, 2186–2199 (1975). (10.1103/PhysRevB.11.2186) / Phys. Rev. B by JD Joannopoulos (1975)
  29. Leiga, A. G. Optical properties of trigonal selenium in vacuum ultraviolet. J. Opt. Soc. Am. 58, 880–884 (1968). (10.1364/JOSA.58.000880) / J. Opt. Soc. Am. by AG Leiga (1968)
  30. Leiga, A. G. Optical properties of amorphous selenium in vacuum ultraviolet. J. Opt. Soc. Am. 58, 1441–1445 (1968). (10.1364/JOSA.58.001441) / J. Opt. Soc. Am. by AG Leiga (1968)
  31. Tutihasi, S., Roberts, G. G., Keezer, R. C. & Drews, R. E. Optical properties of tellurium in fundamental absorption region. Phys. Rev. 177, 1143–1150 (1969). (10.1103/PhysRev.177.1143) / Phys. Rev. by S Tutihasi (1969)
  32. Bammes, P., Tuomi, T., Klucker, R. & Koch, E. E. Anisotropy of dielectric-constants of trigonal selenium and tellurium between 3 and 30 eV. Phys. Status Solidi B 49, 561–570 (1972). (10.1002/pssb.2220490218) / Phys. Status Solidi B by P Bammes (1972)
  33. Potts, W. J. Chemical Infrared Spectroscopy (Wiley, New York, 1963). / Chemical Infrared Spectroscopy by WJ Potts (1963)
  34. Schubert, M. Infrared Ellipsometry on Semiconductor Layer Structures (Springer Tracts in Modern Physics, Vol. 209, Springer, Berlin, 2004). / Infrared Ellipsometry on Semiconductor Layer Structures by M Schubert (2004)
Dates
Type When
Created 17 years, 1 month ago (July 11, 2008, 11:02 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 11:42 a.m.)
Indexed 14 hours, 41 minutes ago (Aug. 20, 2025, 8:43 a.m.)
Issued 17 years, 1 month ago (July 11, 2008)
Published 17 years, 1 month ago (July 11, 2008)
Published Online 17 years, 1 month ago (July 11, 2008)
Published Print 17 years ago (Aug. 1, 2008)
Funders 0

None

@article{Shportko_2008, title={Resonant bonding in crystalline phase-change materials}, volume={7}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2226}, DOI={10.1038/nmat2226}, number={8}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Shportko, Kostiantyn and Kremers, Stephan and Woda, Michael and Lencer, Dominic and Robertson, John and Wuttig, Matthias}, year={2008}, month=jul, pages={653–658} }