Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Hofmann, S., Sharma, R., Wirth, C. T., Cervantes-Sodi, F., Ducati, C., Kasama, T., Dunin-Borkowski, R. E., Drucker, J., Bennett, P., & Robertson, J. (2008). Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nature Materials, 7(5), 372–375.

Authors 10
  1. Stephan Hofmann (first)
  2. Renu Sharma (additional)
  3. Christoph T. Wirth (additional)
  4. Felipe Cervantes-Sodi (additional)
  5. Caterina Ducati (additional)
  6. Takeshi Kasama (additional)
  7. Rafal E. Dunin-Borkowski (additional)
  8. Jeff Drucker (additional)
  9. Peter Bennett (additional)
  10. John Robertson (additional)
References 29 Referenced 255
  1. Wagner, R. S. in Whisker Technology (ed. Levitt, A. P.) (Wiley, New York, 1970). / Whisker Technology by RS Wagner (1970)
  2. Hiruma, K. et al. Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77, 447–462 (1995). (10.1063/1.359026) / J. Appl. Phys. by K Hiruma (1995)
  3. Kamins, T. I., Williams, R. S., Basile, D. P., Hesjedal, T. & Harris, J. S. Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms. J. Appl. Phys. 89, 1008–1016 (2001). (10.1063/1.1335640) / J. Appl. Phys. by TI Kamins (2001)
  4. Persson, A. I. et al. Solid-phase diffusion mechanism for GaAs nanowire growth. Nature Mater. 3, 677–681 (2004). (10.1038/nmat1220) / Nature Mater. by AI Persson (2004)
  5. Wang, Y. W., Schmidt, V., Senz, S. & Gosele, U. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nature Nanotechnol. 1, 186–189 (2006). (10.1038/nnano.2006.133) / Nature Nanotechnol. by YW Wang (2006)
  6. Kodambaka, S., Tersoff, J., Reuter, M. C. & Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 316, 729–732 (2007). (10.1126/science.1139105) / Science by S Kodambaka (2007)
  7. Park, H. D., Gaillot, A.-C., Prokes, S. M. & Cammarata, R. C. Observation of size dependent liquidus depression in the growth of InAs nanowires. J. Cryst. Growth 296, 159–164 (2006). (10.1016/j.jcrysgro.2006.08.033) / J. Cryst. Growth by HD Park (2006)
  8. Adhikari, H., Marshall, A. F., Chidsey, C. E. D. & McIntyre, P. C. Germanium nanowire epitaxy: Shape and orientation control. Nano Lett. 6, 318–323 (2006). (10.1021/nl052231f) / Nano Lett. by H Adhikari (2006)
  9. Howe, J. M. Interfaces in Materials (Wiley, New York, 1997). / Interfaces in Materials by JM Howe (1997)
  10. Jackson, K. A. The present state of the theory of crystal growth from the melt. J. Cryst. Growth 24–25, 130–136 (1974). (10.1016/0022-0248(74)90290-5) / J. Cryst. Growth by KA Jackson (1974)
  11. Hannon, J. B., Shenoy, V. B. & Schwarz, K. W. Anomalous spiral motion of steps near dislocations on silicon surfaces. Science 313, 1266–1269 (2006). (10.1126/science.1129342) / Science by JB Hannon (2006)
  12. Mangin, P., Marchal, G., Mourey, C. & Janot, C. Physical studies of Au(x)Si(1-x) amorphous alloys. Phys. Rev. B 21, 3047–3056 (1980). (10.1103/PhysRevB.21.3047) / Phys. Rev. B by P Mangin (1980)
  13. Shpyrko, O. G. et al. Surface crystallization in a liquid AuSi alloy. Science 313, 77–80 (2006). (10.1126/science.1128314) / Science by OG Shpyrko (2006)
  14. Baxi, H. C. & Massalski, T. B. The Pd–Si System. J. Phase Equilib. 12, 349–356 (1991). (10.1007/BF02649925) / J. Phase Equilib. by HC Baxi (1991)
  15. Hofmann, S. et al. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 7, 602–608 (2007). (10.1021/nl0624824) / Nano Lett. by S Hofmann (2007)
  16. Wu, Y. et al. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004). (10.1021/nl035162i) / Nano Lett. by Y Wu (2004)
  17. Cherns, D., Smith, D. A., Krakow, W. & Batson, P. E. Electron-microscope studies of the structure and propagation of the Pd2Si-(111)Si interface. Phil. Mag. A 45, 107–125 (1982). (10.1080/01418618208243906) / Phil. Mag. A by D Cherns (1982)
  18. Rubloff, G. W. Microscopic properties and behavior of silicide interfaces. Surf. Sci. 132, 268–314 (1983). (10.1016/0039-6028(83)90543-5) / Surf. Sci. by GW Rubloff (1983)
  19. Kodambaka, S., Tersoff, J., Reuter, M. C. & Ross, F. M. Diameter-independent kinetics in the vapor–liquid–solid growth of Si nanowires. Phys. Rev. Lett. 96, 096105 (2006). (10.1103/PhysRevLett.96.096105) / Phys. Rev. Lett. by S Kodambaka (2006)
  20. Liau, Z. L., Campisano, S. U., Canali, C., Lau, S. S. & Mayer, J. W. Kinetics of the initial stage of Si transport through Pd-silicide for epitaxial growth. J. Electrochem. Soc. 122, 1696–1699 (1975). (10.1149/1.2134112) / J. Electrochem. Soc. by ZL Liau (1975)
  21. Goesele, U. in Alloying (eds Walter, J. L., Jackson, M. R. & Sims, C. T.) (ASM, Ohio, 1988). / Alloying by U Goesele (1988)
  22. Lee, S. W., Jeon, Y. C. & Joo, S. K. Pd induced lateral crystallization of amorphous Si thin-films. Appl. Phys. Lett. 66, 1671–1673 (1995). (10.1063/1.113888) / Appl. Phys. Lett. by SW Lee (1995)
  23. Hesse, D., Werner, P., Mattheis, R. & Heydenreich, J. Interfacial reaction barriers during thin-film solid-state reactions—the crystallographic origin of kinetic barriers at the NiSi2/Si(111) interface. Appl. Phys. A 57, 415–425 (1993). (10.1007/BF00331780) / Appl. Phys. A by D Hesse (1993)
  24. Frank, F. C. The influence of dislocations on crystal growth. Discuss. Faraday Soc. 5, 48–54 (1949). (10.1039/df9490500048) / Discuss. Faraday Soc. by FC Frank (1949)
  25. Landolt-Bornstein (ed.) Diffusion in Semiconductors III/33 (Springer, Berlin, 1998).
  26. Weber, W. M. et al. Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 6, 2660–2666 (2006). (10.1021/nl0613858) / Nano Lett. by WM Weber (2006)
  27. Saka, H., Sasaki, K., Tsukimoto, S. & Arai, S. In situ observation of solid–liquid interfaces by transmission electron microscopy. J. Mater. Res. 20, 1629–1640 (2005). (10.1557/JMR.2005.0212) / J. Mater. Res. by H Saka (2005)
  28. Sharma, R. An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. J. Mater. Res. 20, 1695–1707 (2005). (10.1557/JMR.2005.0241) / J. Mater. Res. by R Sharma (2005)
  29. Yokota, T., Murayama, M. & Howe, J. M. In situ transmission-electron-microscopy investigation of melting in submicron Al–Si alloy particles under electron-beam irradiation. Phys. Rev. Lett. 91, 265504 (2003). (10.1103/PhysRevLett.91.265504) / Phys. Rev. Lett. by T Yokota (2003)
Dates
Type When
Created 17 years, 5 months ago (March 9, 2008, 4:31 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 4:05 p.m.)
Indexed 1 week, 3 days ago (Aug. 19, 2025, 7:06 a.m.)
Issued 17 years, 5 months ago (March 9, 2008)
Published 17 years, 5 months ago (March 9, 2008)
Published Online 17 years, 5 months ago (March 9, 2008)
Published Print 17 years, 3 months ago (May 1, 2008)
Funders 0

None

@article{Hofmann_2008, title={Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth}, volume={7}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2140}, DOI={10.1038/nmat2140}, number={5}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Hofmann, Stephan and Sharma, Renu and Wirth, Christoph T. and Cervantes-Sodi, Felipe and Ducati, Caterina and Kasama, Takeshi and Dunin-Borkowski, Rafal E. and Drucker, Jeff and Bennett, Peter and Robertson, John}, year={2008}, month=mar, pages={372–375} }