Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Wuttig, M., & Yamada, N. (2007). Phase-change materials for rewriteable data storage. Nature Materials, 6(11), 824–832.

Authors 2
  1. Matthias Wuttig (first)
  2. Noboru Yamada (additional)
References 70 Referenced 3,263
  1. Meinders, E. R., Mijritskii, A. V., van Pieterson, L. & Wuttig, M. Optical Data Storage: Phase Change Media and Recording (Springer, Berlin, 2006). / Optical Data Storage: Phase Change Media and Recording by ER Meinders (2006)
  2. Yamada, N. et al. High-speed overwritable phase-change optical disk material. Jpn. J. Appl. Phys. Part 1 26, 61–66 (1987). (10.7567/JJAPS.26S4.61) / Jpn. J. Appl. Phys. Part 1 by N Yamada (1987)
  3. Satoh, I. & Yamada, N. DVD-RAM for all audio/video, PC, and network applications. Proc. SPIE 4085, 283–290 (2001). (10.1117/12.416861) / Proc. SPIE by I Satoh (2001)
  4. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968). (10.1103/PhysRevLett.21.1450) / Phys. Rev. Lett. by SR Ovshinsky (1968)
  5. Wuttig, M. Phase-change materials—towards a universal memory? Nature Mater. 4, 265–266 (2005). (10.1038/nmat1359) / Nature Mater. by M Wuttig (2005)
  6. Luo, M. B. & Wuttig, M. The dependence of crystal structure of Te-based phase-change materials on the number of valence electrons. Adv. Mater. 16, 439–443 (2004). (10.1002/adma.200306077) / Adv. Mater. by MB Luo (2004)
  7. Chen, M., Rubin, K. A. & Barton, R. W. Compound materials for reversible, phase-change optical-data storage. Appl. Phys. Lett. 49, 502–504 (1986). (10.1063/1.97617) / Appl. Phys. Lett. by M Chen (1986)
  8. Yamada, N., Takenaga, M. & Takao, M. Te–Ge–Sn–Au phase-change recording film for optical disk. Proc. SPIE 695, 79–85 (1986). (10.1117/12.936820) / Proc. SPIE by N Yamada (1986)
  9. Ohno, E., Yamada, N., Kurumizawa, T., Kimura, K. & Takao, M. Tegesnau alloys for phase-change type optical disk memories. Jpn. J. Appl. Phys. Part 1 28, 1235–1240 (1989). (10.1143/JJAP.28.1235) / Jpn. J. Appl. Phys. Part 1 by E Ohno (1989)
  10. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid-phase transitions of GeTe–Sb2Te3 pseudobinary amorphous thin-films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991). (10.1063/1.348620) / J. Appl. Phys. by N Yamada (1991)
  11. Kojima, R. et al. Nitrogen doping effect on phase change optical disks. Jpn. J. Appl. Phys. Part 1 37, 2098–2103 (1998). (10.1143/JJAP.37.2098) / Jpn. J. Appl. Phys. Part 1 by R Kojima (1998)
  12. Kojima, R. & Yamada, N. Acceleration of crystallization speed by Sn addition to Ge–Sb–Te phase-change recording material. Jpn. J. Appl. Phys. Part 1 40, 5930–5937 (2001). (10.1143/JJAP.40.5930) / Jpn. J. Appl. Phys. Part 1 by R Kojima (2001)
  13. Yusu, K., Nakai, T., Ashida, S., Ohmachi, N., Morishita, N. & Nakamura, N. Highspeed crystallization characteristics of Ge–Sb–Te–Bi materials used for next generation rewritable DVD with blue laser and NA = 0.65. Proc. E\\PCOS05 (2005); available at http://www.epcos.org.
  14. Kusada, H., Hosaka, T., Kojima R. & Yamada, N. Effect of excess Sb on GeTe–Sb2Te3–Bi2Te3 recording films. Proc. 18th Symp. PCOS2005 32–35 (2006).
  15. Iwasaki, H., Ide, Y., Harigaya, M., Kageyama, Y. & Fujimura, I. Completely erasable phase-change optical disk. Jpn. J. Appl. Phys. Part 1 31, 461–465 (1992). (10.1143/JJAP.31.461) / Jpn. J. Appl. Phys. Part 1 by H Iwasaki (1992)
  16. Horie, M., Nobukuni, N., Kiyono, K. & Ohno, T. High-speed rewritable DVD up to 20 m/s with nucleation-free eutectic phase-change material of Ge(Sb70Te30)+Sb. Proc. SPIE 4090, 135–143 (2000). (10.1117/12.399373) / Proc. SPIE by M Horie (2000)
  17. Kato, T. et al. The phase change optical disc with the data recording rate of 140 Mbps. Jpn. J. Appl. Phys. Part 1 41, 1664–1667 (2002). (10.1143/JJAP.41.1664) / Jpn. J. Appl. Phys. Part 1 by T Kato (2002)
  18. Iwasaki, H. et al. Completely erasable phase-change optical disc. II. Application of Ag–In–Sb–Te mixed-phase system for rewritable compact disc compatible with CD-velocity and double CD-velocity. Jpn. J. Appl. Phys. Part 1 32, 5241–5247 (1993). (10.1143/JJAP.32.5241) / Jpn. J. Appl. Phys. Part 1 by H Iwasaki (1993)
  19. Afonso, C. N., Solis, J., Catalina, F. & Kalpouzos, C. Ultrafast reversible phase-change in GeSb films for erasable optical storage. Appl. Phys. Lett. 60, 3123–3125 (1992). (10.1063/1.106772) / Appl. Phys. Lett. by CN Afonso (1992)
  20. Yuzurihara, H., Iwasa, H. & Kaneko, Y. GeSbSnMn for high speed BD-RE media. Proc. 17th Symp. PCOS2005 19–22 (2005).
  21. Yamada, N. & Matsunaga, T. Structure of laser-crystallized Ge2Sb2+ xTe5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020–7028 (2000). (10.1063/1.1314323) / J. Appl. Phys. by N Yamada (2000)
  22. Matsunaga, T. & Yamada, N. A study of highly symmetrical crystal structures, commonly seen in high-speed phase-change materials, using synchrotron radiation. Jpn. J. Appl. Phys. Part 1 41, 1674–1678 (2002). (10.1143/JJAP.41.1674) / Jpn. J. Appl. Phys. Part 1 by T Matsunaga (2002)
  23. Matsunaga, T. & Yamada, N. Crystallographic studies on high-speed phase-change materials used for rewritable optical recording disks. Jpn. J. Appl. Phys. Part 1 43, 4704–4712 (2004). (10.1143/JJAP.43.4704) / Jpn. J. Appl. Phys. Part 1 by T Matsunaga (2004)
  24. Nonaka, T., Ohbayashi, G., Toriumi, Y., Mori, Y. & Hashimoto, H. Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase. Thin Solid Films 370, 258–261 (2000). (10.1016/S0040-6090(99)01090-1) / Thin Solid Films by T Nonaka (2000)
  25. Matsunaga, T. & Yamada, N. Crystal structure and bonding nature of Ge8Sb2Te11, a suitable material for high-speed, high density phase-change recording. Proc. 16th Symp. PCOS2004 1–4 (2005).
  26. Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. Nature Mater. 3, 703–708 (2004). (10.1038/nmat1215) / Nature Mater. by AV Kolobov (2004)
  27. Matsunaga, T., Umetani, Y. & Yamada, N. Structural study of a Ag3.4In3.7Sb76.4Te16.5 quadruple compound utilized for phase-change optical disks. Phys. Rev. B 64, 184116 (2001). (10.1103/PhysRevB.64.184116) / Phys. Rev. B by T Matsunaga (2001)
  28. Zallen, R. Models of amorphous solids. J. Non-Cryst. Solids 75, 3–14 (1985). (10.1016/0022-3093(85)90196-6) / J. Non-Cryst. Solids by R Zallen (1985)
  29. Zachariasen, W. The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932). (10.1021/ja01349a006) / J. Am. Chem. Soc. by W Zachariasen (1932)
  30. Thorpe, M. F. Continuous deformations in random networks. J. Non-Cryst. Solids 57, 355–370 (1983). (10.1016/0022-3093(83)90424-6) / J. Non-Cryst. Solids by MF Thorpe (1983)
  31. Phillips, J. C. & Thorpe, M. F. Constraint theory, vector percolation and glass-formation. Solid State Commun. 53, 699–702 (1985). (10.1016/0038-1098(85)90381-3) / Solid State Commun. by JC Phillips (1985)
  32. Feng, X. W., Bresser, W. J. & Boolchand, P. Direct evidence for stiffness threshold in chalcogenide glasses. Phys. Rev. Lett. 78, 4422–4425 (1997). (10.1103/PhysRevLett.78.4422) / Phys. Rev. Lett. by XW Feng (1997)
  33. Welnic, W. et al. Unravelling the interplay of local structure and physical properties in phase-change materials. Nature Mater. 5, 56–62 (2006). (10.1038/nmat1539) / Nature Mater. by W Welnic (2006)
  34. Wełnic, W., Botti, S., Reining, L. & Wuttig, M. Origin of the optical contrast in phase change materials. Phys. Rev. Lett. 98, 236403 (2007). (10.1103/PhysRevLett.98.236403) / Phys. Rev. Lett. by W Wełnic (2007)
  35. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001). (10.1038/35065704) / Nature by PG Debenedetti (2001)
  36. Baker, D. A., Paesler, M. A., Lucovsky, G., Agarwal, S. C. & Taylor, P. C. Application of bond constraint theory to the switchable optical memory material Ge2Sb2Te5 . Phys. Rev. Lett. 96, 255501 (2006). (10.1103/PhysRevLett.96.255501) / Phys. Rev. Lett. by DA Baker (2006)
  37. Kohara, S. et al. Structural basis for the fast phase change of Ge2Sb2Te5: ring statistics analogy between the crystal and amorphous states. Appl. Phys. Lett. 89, 201910 (2006). (10.1063/1.2387870) / Appl. Phys. Lett. by S Kohara (2006)
  38. Kalb, J., Spaepen, F. & Wuttig, M. Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 93, 2389–2393 (2003). (10.1063/1.1540227) / J. Appl. Phys. by J Kalb (2003)
  39. Kalb, J., Spaepen, F. & Wuttig, M. Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett. 84, 5240–5242 (2004). (10.1063/1.1764591) / Appl. Phys. Lett. by J Kalb (2004)
  40. Kalb, J. A., Wuttig, M. & Spaepen, F. Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748–754 (2007). (10.1557/jmr.2007.0103) / J. Mater. Res. by JA Kalb (2007)
  41. Turnbull, D. Under what conditions can a glass be formed? Contemp. Phys. 10, 473–488 (1969). (10.1080/00107516908204405) / Contemp. Phys. by D Turnbull (1969)
  42. Kalb, J. A., Spaepen, F. & Wuttig, M. Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording. J. Appl. Phys. 98, 054910 (2005). (10.1063/1.2037870) / J. Appl. Phys. by JA Kalb (2005)
  43. Friedrich, I., Weidenhof, V., Lenk, S. & Wuttig, M. Morphology and structure of laser-modified Ge2Sb2Te5 films studied by transmission electron microscopy. Thin Solid Films 389, 239–244 (2001). (10.1016/S0040-6090(01)00891-4) / Thin Solid Films by I Friedrich (2001)
  44. Chen, Y. C. et al. Ultra-thin phase-change bridge memory device using GeSb. IEDM Tech. Digest 777–780 (2006). (10.1109/IEDM.2006.346910)
  45. Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P. & Wuttig, M. Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. J. Appl. Phys. 87, 4130–4134 (2000). (10.1063/1.373041) / J. Appl. Phys. by I Friedrich (2000)
  46. Coombs, J. H., Jongenelis, A. P. J. M., Vanesspiekman, W. & Jacobs, B. A. J. Laser-induced crystallization phenomena in GeTe-based alloys. 2. Composition dependence of nucleation and growth. J. Appl. Phys. 78, 4918–4928 (1995). (10.1063/1.359780) / J. Appl. Phys. by JH Coombs (1995)
  47. Weidenhof, V., Pirch, N., Friedrich, I., Ziegler, S. & Wuttig, M. Minimum time for laser induced amorphization of Ge2Sb2Te5 films. J. Appl. Phys. 88, 657–664 (2000). (10.1063/1.373717) / J. Appl. Phys. by V Weidenhof (2000)
  48. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958). (10.1103/PhysRev.109.1492) / Phys. Rev. by PW Anderson (1958)
  49. Njoroge, W. K., Woltgens, H. W. & Wuttig, M. Density changes upon crystallization of Ge2Sb2.04Te4.74 films. J. Vac. Sci. Technol. A 20, 230–233 (2002). (10.1116/1.1430249) / J. Vac. Sci. Technol. A by WK Njoroge (2002)
  50. Yamada, N. et al. Phase-change material for use in rewritable dual-layer optical disk. Proc. SPIE 4342, 55–63 (2002). (10.1117/12.453428) / Proc. SPIE by N Yamada (2002)
  51. Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys. 74, 601–659 (2002). (10.1103/RevModPhys.74.601) / Rev. Mod. Phys. by G Onida (2002)
  52. Stuke, J. & Zimmerer, G. Optical properties of amorphous 3–5 compounds.1. Experiment. Phys. Status Solidi B 49, 513–523 (1972). (10.1002/pssb.2220490213) / Phys. Status Solidi B by J Stuke (1972)
  53. Wuttig, M. et al. The role of vacancies and local distortions in the design of new phase-change materials. Nature Mater. 6, 122–128 (2007). (10.1038/nmat1807) / Nature Mater. by M Wuttig (2007)
  54. Peierls, R. E. Quantum Theory of Solids (Oxford Univ. Press, Oxford, 1956). / Quantum Theory of Solids by RE Peierls (1956)
  55. Gaspard, J. P. Hume–Rothery rule in V–VI compounds. Solid State Commun. 84, 839–842 (1992). (10.1016/0038-1098(92)90102-F) / Solid State Commun. by JP Gaspard (1992)
  56. Gaspard, J. P., Pellegatti, A., Marinelli, F. & Bichara, C. Peierls instabilities in covalent structures. I. Electronic structure, cohesion and the Z = 8 − N rule. Phil. Mag. B 77, 727–744 (1998). (10.1080/13642819808214831) / Phil. Mag. B by JP Gaspard (1998)
  57. Nakano, T., Sato, A., Fuji, H., Tominaga, J. & Atoda, N. Transmitted signal detection of optical disks with a superresolution near-field structure. Appl. Phys. Lett. 75, 151–153 (1999). (10.1063/1.124302) / Appl. Phys. Lett. by T Nakano (1999)
  58. Tominaga, J., Fuji, H., Sato, A., Nakano, T. & Atoda, N. The characteristics and the potential of super resolution near-field structure. Jpn. J. Appl. Phys. Part 1 39, 957–961 (2000). (10.1143/JJAP.39.957) / Jpn. J. Appl. Phys. Part 1 by J Tominaga (2000)
  59. Kim, J. et al. Super-resolution near-field structure with alternative recording and mask materials. Jpn. J. Appl. Phys. Part 1 42, 1014–1017 (2003). (10.1143/JJAP.42.1014) / Jpn. J. Appl. Phys. Part 1 by J Kim (2003)
  60. Cho, W. Y. et al. A 0.18-μm 3.0-V 64-Mb nonvolatile phase-transition random access memory (PRAM). IEEE J. Solid-State Circuits 40, 293–300 (2005). (10.1109/JSSC.2004.837974) / IEEE J. Solid-State Circuits by WY Cho (2005)
  61. Hudgens, S. & Johnson, B. Overview of phase-change chalcogenide nonvolatile memory technology. Mater. Res. Soc. Bull. 29, 829–832 (2004). (10.1557/mrs2004.236) / Mater. Res. Soc. Bull. by S Hudgens (2004)
  62. Bez, R. & Pirovano, A. Non-volatile memory technologies: emerging concepts and new materials, Mater. Sci. Semicond. Proc. 7, 349–355 (2004). (10.1016/j.mssp.2004.09.127) / Mater. Sci. Semicond. Proc. by R Bez (2004)
  63. Lankhorst, M. H. R., Ketelaars, B. W. S. M. M. & Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Mater. 4, 347–352 (2005). (10.1038/nmat1350) / Nature Mater. by MHR Lankhorst (2005)
  64. Hanzawa, S. et al. A 512 kB embedded phase change memory with 416 kb/s write throughput 100 μA cell write current. ISSCC Digest Tech. 474–475 (2007). (10.1109/ISSCC.2007.373500)
  65. Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F. & Bez, R. Electronic switching in phase-change memories. IEEE Trans. Electron Devices 51, 452–459 (2004). (10.1109/TED.2003.823243) / IEEE Trans. Electron Devices by A Pirovano (2004)
  66. Merget, F., Kim, D. H., Bolivar, P. Η. & Kurz, H. Lateral phase change random access memory cell design for low power operation. Microsyst. Technol. 13, 169–172 (2007). (10.1007/s00542-006-0141-z) / Microsyst. Technol. by F Merget (2007)
  67. Kim, D. H., Merget, F., Forst, M. & Kurz, H. Threedimensional simulation model of switching dynmics in phase change random access memory cells. J. Appl. Phys. 101, 064512–1 (2007). (10.1063/1.2710440) / J. Appl. Phys. by DH Kim (2007)
  68. Kastner, M., Adler, D. & Fritsche, H. Valence-alternation model for localized gap states in lone-pair semiconductors. Phys. Rev. Lett. 37, 1504–1507 (1976). (10.1103/PhysRevLett.37.1504) / Phys. Rev. Lett. by M Kastner (1976)
  69. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007). (10.1038/nmat2023) / Nature Mater. by R Waser (2007)
  70. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007). (10.1038/nmat2028) / Nature Mater. by W Lu (2007)
Dates
Type When
Created 17 years, 9 months ago (Nov. 1, 2007, 7:09 a.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 2:40 p.m.)
Indexed 54 minutes ago (Aug. 27, 2025, 10:31 p.m.)
Issued 17 years, 9 months ago (Nov. 1, 2007)
Published 17 years, 9 months ago (Nov. 1, 2007)
Published Print 17 years, 9 months ago (Nov. 1, 2007)
Funders 0

None

@article{Wuttig_2007, title={Phase-change materials for rewriteable data storage}, volume={6}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat2009}, DOI={10.1038/nmat2009}, number={11}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Wuttig, Matthias and Yamada, Noboru}, year={2007}, month=nov, pages={824–832} }