Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Rittigstein, P., Priestley, R. D., Broadbelt, L. J., & Torkelson, J. M. (2007). Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nature Materials, 6(4), 278–282.

Authors 4
  1. Perla Rittigstein (first)
  2. Rodney D. Priestley (additional)
  3. Linda J. Broadbelt (additional)
  4. John M. Torkelson (additional)
References 30 Referenced 629
  1. Vaia, R. A. & Giannelis, E. P. Polymer nanocomposites: Status and opportunities. Mater. Res. Soc. Bull. 26, 394–401 (2001). (10.1557/mrs2001.93) / Mater. Res. Soc. Bull. by RA Vaia (2001)
  2. Sanchez, C., Julian, B., Belleville, P. & Popall, M. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005). (10.1039/b509097k) / J. Mater. Chem. by C Sanchez (2005)
  3. Keddie, J. L., Jones, R. A. L. & Cory, R. A. Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27, 59–64 (1994). (10.1209/0295-5075/27/1/011) / Europhys. Lett. by JL Keddie (1994)
  4. van Zanten, J. H., Wallace, W. E. & Wu, W. L. Effect of strongly favorable substrate interactions on the thermal properties of ultrathin polymer films. Phys. Rev. E 53, R2053–R2056 (1996). (10.1103/PhysRevE.53.R2053) / Phys. Rev. E by JH van Zanten (1996)
  5. Forrest, J. A., Dalnoki-Veress, K., Stevens, J. R. & Dutcher, J. R. Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002–2005 (1996). (10.1103/PhysRevLett.77.2002) / Phys. Rev. Lett. by JA Forrest (1996)
  6. Fryer, D. S. et al. Dependence of the glass transition temperature of polymer films on interfacial energy and thickness. Macromolecules 34, 5627–5634 (2001). (10.1021/ma001932q) / Macromolecules by DS Fryer (2001)
  7. Grohens, Y., Hamon, L., Reiter, G., Soldera, A. & Holl, Y. Some relevant parameters affecting the glass transition of supported ultra-thin polymer films. Eur. Phys. J. E 8, 217–224 (2002). (10.1140/epje/i2001-10088-4) / Eur. Phys. J. E by Y Grohens (2002)
  8. Park, C. H. et al. Thickness and composition dependence of the glass transition temperature in thin random copolymer films. Polymer 45, 4507–4513 (2004). (10.1016/j.polymer.2004.04.048) / Polymer by CH Park (2004)
  9. Ellison, C. J., Kim, S. D., Hall, D. B. & Torkelson, J. M. Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: Novel fluorescence measurements. Eur. Phys. J. E 8, 155–166 (2002). (10.1140/epje/i2001-10057-y) / Eur. Phys. J. E by CJ Ellison (2002)
  10. Ellison, C. J. & Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nature Mater. 2, 695–700 (2003). (10.1038/nmat980) / Nature Mater. by CJ Ellison (2003)
  11. Ellison, C. J., Mundra, M. K. & Torkelson, J. M. Impacts of polystyrene molecular weight and modification to the repeat unit structure on the glass transition-nanoconfinement effect and the cooperativity length scale. Macromolecules 38, 1767–1778 (2005). (10.1021/ma047846y) / Macromolecules by CJ Ellison (2005)
  12. Mundra, M. K., Ellison, C. J., Behling, R. E. & Torkelson, J. M. Confinement, composition, and spin-coating effects on the glass transition and stress relaxation of thin films of polystyrene and styrene-containing random copolymers: sensing by intrinsic fluorescence. Polymer 47, 7747–7759 (2006). (10.1016/j.polymer.2006.08.064) / Polymer by MK Mundra (2006)
  13. Sharp, J. S. & Forrest, J. A. Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. Phys. Rev. Lett. 91, 235701 (2003). (10.1103/PhysRevLett.91.235701) / Phys. Rev. Lett. by JS Sharp (2003)
  14. Roth, C. B. & Dutcher, J. R. Glass transition and chain mobility in thin polymer films. J. Electroanal. Chem. 584, 13–22 (2005). (10.1016/j.jelechem.2004.03.003) / J. Electroanal. Chem. by CB Roth (2005)
  15. Alcoutlabi, M. & McKenna, G. B. Effects of confinement on material behaviour at the nanometer size scale. J. Phys. Condens. Matter 17, R461–R524 (2005). (10.1088/0953-8984/17/15/R01) / J. Phys. Condens. Matter by M Alcoutlabi (2005)
  16. Ash, B. J., Schadler, L. S. & Siegel, R. W. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater. Lett. 55, 83–87 (2002). (10.1016/S0167-577X(01)00626-7) / Mater. Lett. by BJ Ash (2002)
  17. Arrighi, V., McEwen, I. J., Qian, H. & Serrano Prieto, M. B. The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller. Polymer 44, 6259–6266 (2003). (10.1016/S0032-3861(03)00667-0) / Polymer by V Arrighi (2003)
  18. Sun, Y. Y., Zhang, Z. Q., Moon, K. S. & Wong, C. P. Glass transition and relaxation behavior of epoxy nanocomposites. J. Polym. Sci. B 42, 3849–3858 (2004). (10.1002/polb.20251) / J. Polym. Sci. B by YY Sun (2004)
  19. Berriot, J., Montes, H., Lequeux, F., Long, D. & Sotta, P. Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules 35, 9756–9762 (2002). (10.1021/ma0212700) / Macromolecules by J Berriot (2002)
  20. Blum, F. D., Young, E. N., Smith, G. & Sitton, O. C. Thermal analysis of adsorbed poly(methyl methacrylate) on silica. Langmuir 22, 4741–4744 (2006). (10.1021/la053098+) / Langmuir by FD Blum (2006)
  21. Rittigstein, P. & Torkelson, J. M. Polymer-nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci. B 44, 2935–2943 (2006). (10.1002/polb.20925) / J. Polym. Sci. B by P Rittigstein (2006)
  22. Starr, F. W., Schroder, T. B. & Glotzer, S. C. Effects of a nanoscopic filler on the structure and dynamics of simulated polymer melt and the relationship to ultrathin films. Phys. Rev. E 64, 021802 (2001). (10.1103/PhysRevE.64.021802) / Phys. Rev. E by FW Starr (2001)
  23. Priestley, R. D., Broadbelt, L. J. & Torkelson, J. M. Physical aging of ultrathin polymer films above and below the bulk glass transition temperature: Effects of attractive vs neutral polymer-substrate interactions measured by fluorescence. Macromolecules 38, 654–657 (2005). (10.1021/ma047994o) / Macromolecules by RD Priestley (2005)
  24. Priestley, R. D., Ellison, C. J., Broadbelt, L. J. & Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456–459 (2005). (10.1126/science.1112217) / Science by RD Priestley (2005)
  25. Huang, Y. & Paul, D. R. Physical aging of thin glassy polymer films monitored by optical properties. Macromolecules 39, 1554–1559 (2006). (10.1021/ma050533y) / Macromolecules by Y Huang (2006)
  26. Kawana, S. & Jones, R. A. L. Effect of physical ageing in thin glassy polymer films. Eur. Phys. J. E 10, 223–230 (2003). (10.1140/epje/i2002-10111-4) / Eur. Phys. J. E by S Kawana (2003)
  27. Lu, H. B. & Nutt, S. Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules 36, 4010–4016 (2003). (10.1021/ma034049b) / Macromolecules by HB Lu (2003)
  28. Bansal, A. et al. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nature Mater. 4, 693–698 (2005). (10.1038/nmat1447) / Nature Mater. by A Bansal (2005)
  29. Papakonstantopoulos, G. J., Yoshimoto, K., Doxastakis, M., Nealey, P. F. & de Pablo, J. J. Local mechanical properties of polymeric nanocomposites. Phys. Rev. E 72, 031801 (2005). (10.1103/PhysRevE.72.031801) / Phys. Rev. E by GJ Papakonstantopoulos (2005)
  30. Narayanan, R. A. et al. Dynamics and internal stresses at the nanoscale related to unique thermomechanical behavior in polymer nanocomposites. Phys. Rev. Lett 97, 075505 (2006). (10.1103/PhysRevLett.97.075505) / Phys. Rev. Lett by RA Narayanan (2006)
Dates
Type When
Created 18 years, 5 months ago (March 18, 2007, 2:02 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:28 p.m.)
Indexed 2 days, 16 hours ago (Aug. 27, 2025, 11:31 a.m.)
Issued 18 years, 5 months ago (March 18, 2007)
Published 18 years, 5 months ago (March 18, 2007)
Published Online 18 years, 5 months ago (March 18, 2007)
Published Print 18 years, 4 months ago (April 1, 2007)
Funders 0

None

@article{Rittigstein_2007, title={Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites}, volume={6}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat1870}, DOI={10.1038/nmat1870}, number={4}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Rittigstein, Perla and Priestley, Rodney D. and Broadbelt, Linda J. and Torkelson, John M.}, year={2007}, month=mar, pages={278–282} }