Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Lee, W., Ji, R., Gösele, U., & Nielsch, K. (2006). Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nature Materials, 5(9), 741–747.

Authors 4
  1. Woo Lee (first)
  2. Ran Ji (additional)
  3. Ulrich Gösele (additional)
  4. Kornelius Nielsch (additional)
References 45 Referenced 1,253
  1. Keller, F., Hunter, M. S. & Robinson, D. L. Structural features of oxide coatings on aluminium. J. Electrochem. Soc. 100, 411–419 (1953). (10.1149/1.2781142) / J. Electrochem. Soc. by F Keller (1953)
  2. Hunter, M. S. & Fowle, P. Determination of barrier layer thickness of anodic oxide coating. J. Electrochem. Soc. 101, 481–485 (1954). (10.1149/1.2781304) / J. Electrochem. Soc. by MS Hunter (1954)
  3. Thompson, G. E. & Wood, G. C. Porous anodic film formation on aluminium. Nature 290, 230–232 (1981). (10.1038/290230a0) / Nature by GE Thompson (1981)
  4. Lohrengel, M. M. Thin anodic oxide layers on aluminium and other valve metals: high field regime. Mater. Sci. Eng. R 11, 243–294 (1993). (10.1016/0927-796X(93)90005-N) / Mater. Sci. Eng. R by MM Lohrengel (1993)
  5. Diggle, J. W., Downie, T. C. & Goulding, C. W. Anodic oxide films on aluminium. Chem. Rev. 69, 365–405 (1969). (10.1021/cr60259a005) / Chem. Rev. by JW Diggle (1969)
  6. Thompson, G. E., Furneaux, R. C., Wood, G. C., Richardson, J. A. & Goode, J. S. Nucleation and growth of porous anodic films on aluminium. Nature 272, 433–435 (1978). (10.1038/272433a0) / Nature by GE Thompson (1978)
  7. Wood, G. C. & O’Sullivan, J. P. The anodizing of aluminium in sulphate solutions. Electrochim. Acta 15, 1865–1876 (1970). (10.1016/0013-4686(70)85024-1) / Electrochim. Acta by GC Wood (1970)
  8. Lee, W., Scholz, R., Nielsch, K. & Gösele, U. A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew. Chem. Int. Edn 44, 6050–6054 (2005). (10.1002/anie.200501341) / Angew. Chem. Int. Edn by W Lee (2005)
  9. Lee, S. B. et al. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296, 2198–2200 (2002). (10.1126/science.1071396) / Science by SB Lee (2002)
  10. Park, S., Lim, J.-H., Chung, S.-W. & Mirkin, C. A. Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303, 348–351 (2004). (10.1126/science.1093276) / Science by S Park (2004)
  11. Kovtyukhova, N. I. & Mallouk, T. E. Nanowire p-n heterojunction diodes made by templated assembly of multilayer carbon-nanotube/polymer/semiconductor-particle shells around metal nanowires. Adv. Mater. 17, 187–192 (2005). (10.1002/adma.200400874) / Adv. Mater. by NI Kovtyukhova (2005)
  12. Zhi, L., Wu, J., Li, J., Kolb, U. & Müllen, K. Carbonization of disclike molecules in porous alumina membranes: Toward carbon nanotubes with controlled graphene-layer orientation. Angew. Chem. Int. Edn 44, 2120–2123 (2005). (10.1002/anie.200460986) / Angew. Chem. Int. Edn by L Zhi (2005)
  13. Mikulskas, I., Juodkazis, S., Tomašiūmas, R. & Dumas, J. G. Aluminium oxide photonic crystals grown by a new hybrid method. Adv. Mater. 13, 1574–1577 (2001). (10.1002/1521-4095(200110)13:20<1574::AID-ADMA1574>3.0.CO;2-9) / Adv. Mater. by I Mikulskas (2001)
  14. Hurst, S. J., Payne, E. K., Qin, L. & Mirkin, C. A. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew. Chem. Int. Edn 45, 2672–2692 (2006). (10.1002/anie.200504025) / Angew. Chem. Int. Edn by SJ Hurst (2006)
  15. Masuda, H. & Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995). (10.1126/science.268.5216.1466) / Science by H Masuda (1995)
  16. Masuda, H., Hasegwa, F. & Ono, S. Self-ordering of cell arrangement of anodic porous alumina formed in sulphuric acid solution. J. Electrochem. Soc. 144, L127–L130 (1997). (10.1149/1.1837634) / J. Electrochem. Soc. by H Masuda (1997)
  17. Li, A. P., Müller, F., Birner, A., Nielsch, K. & Gösele, U. Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023–6026 (1998). (10.1063/1.368911) / J. Appl. Phys. by AP Li (1998)
  18. Masuda, H., Yada, K. & Osaka, A. Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. 37, L1340–L1342 (1998). (10.1143/JJAP.37.L1340) / Jpn. J. Appl. Phys. by H Masuda (1998)
  19. Shingubara, S., Morimoto, K., Sakaue, H. & Takahagi, T. Self-organization of a porous alumina nanohole array using a sulfuric/oxalic acid mixture as electrolyte. Electrochem. Solid-State Lett. 7, E15–E17 (2004). (10.1149/1.1644353) / Electrochem. Solid-State Lett. by S Shingubara (2004)
  20. Li, F., Zhang, L. & Metzger, R. M. On the growth of highly ordered pores in anodized aluminium oxide. Chem. Mater. 10, 2470–2480 (1998). (10.1021/cm980163a) / Chem. Mater. by F Li (1998)
  21. Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R. B. & Gösele, U. Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Lett. 2, 677 (2002). (10.1021/nl025537k) / Nano Lett. by K Nielsch (2002)
  22. Csokán, P. Beiträge zur kenntnis der anodischen oxydation von aluminium verdunnter, kalter schwefelsaure. Metalloberfläche 15, B49–B53 (1961). / Metalloberfläche by P Csokán (1961)
  23. Csokán, P. & Sc, C. C. Hard anodizing: Studies of the relation between anodizing conditions and the growth and properties of hard anodic oxide coatings. Electroplat. Metal Finish. 15, 75–82 (1962). / Electroplat. Metal Finish. by P Csokán (1962)
  24. Lichtenberger-Bajza, E., Domony, A. & Csokán, P. Untersuchung der struktur und anderer eigenschaften von durch anodische oxydation auf aluminium erzeugten hartoxydschichten. Werkstoffe. Korros. 11, 701–707 (1960). (10.1002/maco.19600111105) / Werkstoffe. Korros. by E Lichtenberger-Bajza (1960)
  25. Csokán, P. Some observations on the growth mechanism of hard anodic oxide coatings on aluminium. Trans. Inst. Metal Finishing 41, 51–56 (1964). (10.1080/00202967.1964.11869884) / Trans. Inst. Metal Finishing by P Csokán (1964)
  26. Olbertz, B. Hartanodisieren eröffnet aluminum vielfältige technische Anwendungs-möglichkeiten. Aluminium 3, 268–270 (1988). / Aluminium by B Olbertz (1988)
  27. Rajendra, A. et al. Hard anodization of aluminium and its application to sensorics. Surf. Eng. 21, 193–197 (2005). (10.1179/174329405X50000) / Surf. Eng. by A Rajendra (2005)
  28. John, S., Balasubramanian, V. & Shenoi, B. A. Hard anodizing aluminium and its alloys—AC in sulphuric acid—sodium sulphate bath. Met. Finish. 82, 33–39 (1984). / Met. Finish. by S John (1984)
  29. Hecker, J. G. Aluminum hard coats. Product Finishing 53, 88–92 (1988). / Product Finishing by JG Hecker (1988)
  30. Ono, S., Saito, M., Ishiguro, M. & Asoh, H. Controlling factor of self-ordering of anodic porous alumina. J. Electrochem. Soc. 151, B473–B478 (2004). (10.1149/1.1767838) / J. Electrochem. Soc. by S Ono (2004)
  31. Chu, S. Z., Wada, K., Inoue, S., Isogai, M. & Yasumori, A. Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization. Adv. Mater. 17, 2115–2119 (2005). (10.1002/adma.200500401) / Adv. Mater. by SZ Chu (2005)
  32. Ono, S., Saito, M. & Asoh, H. Self-ordering of anodic porous alumina induced by local current concentration: Burning. Electrochem. Solid-State Lett. 7, B21–B24 (2004). (10.1149/1.1738553) / Electrochem. Solid-State Lett. by S Ono (2004)
  33. Ono, S., Saito, M. & Asoh, H. Self-ordering of anodic porous alumina formed in organic acid electrolytes. Electrochim. Acta 51, 827–833 (2005). (10.1016/j.electacta.2005.05.058) / Electrochim. Acta by S Ono (2005)
  34. Arrowsmith, D. J., Clifford, A. W. & Moth, D. A. Fracture of anodic oxide formed on aluminium in sulphuric acid. J. Mater. Sci. Lett. 5, 921–922 (1986). (10.1007/BF01729276) / J. Mater. Sci. Lett. by DJ Arrowsmith (1986)
  35. Wada, K., Shimohira, T., Yamada, M. & Baba, N. Microstructure of porous anodic oxide films on aluminium. J. Mater. Sci. Lett. 21, 3810–3816 (1986). (10.1007/BF02431615) / J. Mater. Sci. Lett. by K Wada (1986)
  36. Masuda, H. et al. Square and triangular nanohole array architectures in anodic alumina. Adv. Mater. 13, 189–192 (2001). (10.1002/1521-4095(200102)13:3<189::AID-ADMA189>3.0.CO;2-Z) / Adv. Mater. by H Masuda (2001)
  37. Fournier-Bidoz, S., Kitaev, V., Routkevitch, D., Manners, I. & Ozin, G. A. Highly ordered nanosphere imprinted nanochannel alumina (NINA). Adv. Mater. 16, 2193–2196 (2004). (10.1002/adma.200400484) / Adv. Mater. by S Fournier-Bidoz (2004)
  38. Asoh, H., Nishio, K., Nakao, M., Tamamura, T. & Masuda, H. Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al. J. Electrochem. Soc. 148, B152–B156 (2001). (10.1149/1.1355686) / J. Electrochem. Soc. by H Asoh (2001)
  39. Lee, W., Ji, R., Ross, C. A., Gösele, U. & Nielsch, K. Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography. Small 2, 978–982 (2006). (10.1002/smll.200600100) / Small by W Lee (2006)
  40. O’Sullivan, J. P. & Wood, G. C. The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. London A 317, 511–543 (1970). (10.1098/rspa.1970.0129) / Proc. R. Soc. London A by JP O’Sullivan (1970)
  41. Jessensky, O., Müller, F. & Gösele, U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173–1175 (1998). (10.1063/1.121004) / Appl. Phys. Lett. by O Jessensky (1998)
  42. Parkhutik, V. P. & Shershulsky, V. I. Theoretical modelling of porous oxide growth on aluminium. J. Phys. D 25, 1258–1263 (1992). (10.1088/0022-3727/25/8/017) / J. Phys. D by VP Parkhutik (1992)
  43. Ebihara, K., Takahashi, H. & Nagayama, M. Structure and density of anodic oxide films formed on aluminium in oxalic acid solutions. J. Met. Finish. Soc. Jpn 34, 548–553 (1983). (10.4139/sfj1950.34.548) / J. Met. Finish. Soc. Jpn by K Ebihara (1983)
  44. Güntherschulze, A. & Betz, H. Die bewegung der ionengitter von isolatoren bei extremen elektrischen feldstärken. Z. Phys. 92, 367–374 (1934). (10.1007/BF01340820) / Z. Phys. by A Güntherschulze (1934)
  45. Cabrera, N. & Mott, N. F. Theory of the oxidation of metals. Rep. Prog. Phys. 12, 163–184 (1948). (10.1088/0034-4885/12/1/308) / Rep. Prog. Phys. by N Cabrera (1948)
Dates
Type When
Created 19 years ago (Aug. 20, 2006, 1:10 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 2:19 p.m.)
Indexed 2 days ago (Aug. 30, 2025, 12:40 p.m.)
Issued 19 years ago (Aug. 20, 2006)
Published 19 years ago (Aug. 20, 2006)
Published Online 19 years ago (Aug. 20, 2006)
Published Print 19 years ago (Sept. 1, 2006)
Funders 0

None

@article{Lee_2006, title={Fast fabrication of long-range ordered porous alumina membranes by hard anodization}, volume={5}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat1717}, DOI={10.1038/nmat1717}, number={9}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Lee, Woo and Ji, Ran and Gösele, Ulrich and Nielsch, Kornelius}, year={2006}, month=aug, pages={741–747} }