Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Taberna, P. L., Mitra, S., Poizot, P., Simon, P., & Tarascon, J.-M. (2006). High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials, 5(7), 567–573.

Authors 5
  1. P. L. Taberna (first)
  2. S. Mitra (additional)
  3. P. Poizot (additional)
  4. P. Simon (additional)
  5. J.-M. Tarascon (additional)
References 40 Referenced 1,915
  1. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition metal oxides as negative electrode material for lithium-ion batteries. Nature 407, 496–499 (2000). (10.1038/35035045) / Nature by P Poizot (2000)
  2. Tarascon, J.-M., Grugeon, S., Laruelle, S., Larcher, D. & Poizot, P. in Lithium Batteries – Science and Technology (eds Nazri, G. A. & Pistoia, G.) Ch. 7 (Kluwer Academic, Boston, 2003). / Lithium Batteries – Science and Technology by J-M Tarascon (2003)
  3. Poizot, P., Laruelle, S., Grugeon, S. & Tarascon, J.-M. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. J. Electrochem. Soc. 149, A1212–A1217 (2002). (10.1149/1.1497981) / J. Electrochem. Soc. by P Poizot (2002)
  4. Pereira, N., Klein, L. C. & Amatucci, G. G. The electrochemistry of Zn3N2 and LiZnN. A lithium reaction mechanism for metal nitride electrodes. J. Electrochem. Soc. 149, A262–A2717 (2002). (10.1149/1.1446079) / J. Electrochem. Soc. by N Pereira (2002)
  5. Pralong, V., Souza, D. C. S., Leung, K. T. & Nazar, L. F. The mechanism of reversible lithium uptake in CoP3 at low potential: role of the anion. Electrochem. Commun. 4, 516–520 (2002). (10.1016/S1388-2481(02)00363-6) / Electrochem. Commun. by V Pralong (2002)
  6. Li, H., Balaya, P. & Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878–A1885 (2004). (10.1149/1.1801451) / J. Electrochem. Soc. by H Li (2004)
  7. Whitehead, A. H., Elliott, J. M. & Owen, J. R. Nanostructured tin for use as a negative electrode material in Li-ion. J. Power Sources 81–82, 33–38 (1999). (10.1016/S0378-7753(99)00126-3) / J. Power Sources by AH Whitehead (1999)
  8. Kavan, L. & Grätzel, M. Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion. Electrochem. Solid-State Lett. 5, A39–A42 (2002). (10.1149/1.1432783) / Electrochem. Solid-State Lett. by L Kavan (2002)
  9. Dewan, C. & Teeters, D. Vanadia xerogel nanocathodes used in lithium microbatteries. J. Power Sources 119–121, 310–315 (2003). (10.1016/S0378-7753(03)00165-4) / J. Power Sources by C Dewan (2003)
  10. Yan, H. et al. Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for Lithium secondary batteries. J. Electrochem. Soc. 150, A1102–A1107 (2003). (10.1149/1.1590324) / J. Electrochem. Soc. by H Yan (2003)
  11. Nishizawa, M., Mukai, K., Kuwabata, S., Martin, C. R. & Yoneyama, H. Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries. J. Electrochem. Soc. 144, 1923–1927 (1997). (10.1149/1.1837722) / J. Electrochem. Soc. by M Nishizawa (1997)
  12. Li, N., Patrissi, C. J. & Martin, C. R. Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte. J. Electrochem. Soc. 147, 2044–2049 (2000). (10.1149/1.1393483) / J. Electrochem. Soc. by N Li (2000)
  13. Li, N., Mitchell, D. T., Lee, K.-P. & Martin, C. R. A nanostructured honeycomb carbon anode. J. Electrochem. Soc. 150, A979–A984 (2003). (10.1149/1.1581259) / J. Electrochem. Soc. by N Li (2003)
  14. Patrissi, C. J. & Martin, C. R. Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide. J. Electrochem. Soc. 146, 3176–3180 (1999). (10.1149/1.1392451) / J. Electrochem. Soc. by CJ Patrissi (1999)
  15. Patrissi, C. J. & Martin, C. R. Improving the volumetric energy densities of nanostructured V2O5 electrodes prepared using the template method. J. Electrochem. Soc. 148, A1247–A1253 (2001). (10.1149/1.1407831) / J. Electrochem. Soc. by CJ Patrissi (2001)
  16. Croce, F., Sides, C. R., Young, V. Y., Martin, C. R. & Scrosatti, B. A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochem. Solid-State Lett. 8, A484–A487 (2005). (10.1149/1.1999916) / Electrochem. Solid-State Lett. by F Croce (2005)
  17. Che, G., Jirage, K. B., Fisher, E. R., Martin, C. R. & Yoneyama, H. Chemical-vapor deposition-based template synthesis of microtubular TiS2 battery electrodes. J. Electrochem. Soc. 144, 4296–4302 (1997). (10.1149/1.1838181) / J. Electrochem. Soc. by G Che (1997)
  18. Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. & Schlager, J. J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. in Vitro 19, 975–983 (2005). (10.1016/j.tiv.2005.06.034) / Toxicol. in Vitro by SM Hussain (2005)
  19. Thackeray, M. M. & Coetzer, J. A preliminary investigation of the electrochemical performance of α-Fe2O3 and Fe3O4 cathodes in high-temperature cells. Mater. Res. Bull. 16, 591–597 (1981). (10.1016/0025-5408(81)90126-4) / Mater. Res. Bull. by MM Thackeray (1981)
  20. Thackeray, M. M., David, W. I. F. & Goodenough, J. B. Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0<x<2). Mater. Res. Bull. 17, 785–793 (1982). (10.1016/0025-5408(82)90029-0) / Mater. Res. Bull. by MM Thackeray (1982)
  21. Coey, J. M. D., Berkowitz, A. E., Balcells, Ll., Putris, F. F. & Parker, F. T. Magnetoresistance of magnetite. Appl. Phys. Lett. 72, 734–736 (1998). (10.1063/1.120859) / Appl. Phys. Lett. by JMD Coey (1998)
  22. Martin, C. R. Membrane-based synthesis of nanomaterials. Chem. Mater. 8, 1739–1746 (1996). (10.1021/cm960166s) / Chem. Mater. by CR Martin (1996)
  23. Dobrev, D., Vetter, J. & Angert, N. Electrochemical preparation of metal microstructures on large areas of etched ion track membranes. Nucl. Instrum. Methods B 149, 207–212 (1999). (10.1016/S0168-583X(98)00618-1) / Nucl. Instrum. Methods B by D Dobrev (1999)
  24. Konishi, Y. et al. Electrodeposition of Cu nanowire arrays with a template. J. Electroanal. Chem. 559, 149–153 (2003). (10.1016/S0022-0728(03)00157-8) / J. Electroanal. Chem. by Y Konishi (2003)
  25. Leopold, S. et al. Electrochemical deposition of cylindrical Cu/Cu2O microstructures. Electrochim. Acta 47, 4393–4397 (2002). (10.1016/S0013-4686(02)00515-7) / Electrochim. Acta by S Leopold (2002)
  26. Valizadeh, S., George, J. M., Leisner, P. & Hultman, L. Electrochemical synthesis of Ag/Co multilayered nanowires in porous polycarbonate membranes. Thin Solid Films 402, 262–271 (2002). (10.1016/S0040-6090(01)01674-1) / Thin Solid Films by S Valizadeh (2002)
  27. Wendt, H. & Kreysa, G. Electrochemical Engineering (Springer, Berlin Heidelberg, 1999). (10.1007/978-3-662-03851-2) / Electrochemical Engineering by H Wendt (1999)
  28. Ueda, M. et al. Double-pulse technique as an electrochemical tool for controlling the preparation of metallic nanoparticles. Electrochim. Acta 48, 377–386 (2002). (10.1016/S0013-4686(02)00683-7) / Electrochim. Acta by M Ueda (2002)
  29. Oh, J., Tak, Y. & Lee, J. Electrochemically deposited nanocolumnar junctions of Cu2O and ZnO on Ni nanowires. Electrochem. Solid-State Lett. 8, C81–C84 (2005). (10.1149/1.1904463) / Electrochem. Solid-State Lett. by J Oh (2005)
  30. Kothari, H. M. et al. Electrochemical deposition and characterization of Fe3O4 films produced by the reduction of Fe(III)-triethanolamine. J. Mater. Res. 21, 293–301 (2006). (10.1557/jmr.2006.0030) / J. Mater. Res. by HM Kothari (2006)
  31. Mitra, S., Poizot, P., Finke, A. & Tarascon, J.-M. Growth and electrochemical characterization vs. Li of Fe3O4 electrodes made by electrodeposition. Adv. Funct. Mater. in the press.
  32. Doyle, M., Newman, J. & Reimers, J. A quick method of measuring the capacity versus discharge rate for a dual lithium-ion insertion cell undergoing cycling. J. Power Sources 52, 211–216 (1994). (10.1016/0378-7753(94)02012-4) / J. Power Sources by M Doyle (1994)
  33. Tarascon, J.-M., Gozdz, A. S., Schumtz, C., Shokoohi, F. & Warren, P. C. Performance of Bellcore's plastic rechargeable Li-ion batteries. Solid State Ion. 86–88, 49–54 (1996). (10.1016/0167-2738(96)00330-X) / Solid State Ion. by J-M Tarascon (1996)
  34. Bard, J. A. & Faulkner, L. R. Electrochemical Methods (Wiley, New York, 2001). / Electrochemical Methods by JA Bard (2001)
  35. Weppner, W. & Huggins, R. A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb . J. Electrochem. Soc. 124, 1569–1578 (1977). (10.1149/1.2133112) / J. Electrochem. Soc. by W Weppner (1977)
  36. Novák, P. CuO cathode in lithium cells–-II. Reduction mechanism of CuO. Electrochim. Acta 30, 1687–1692 (1985). (10.1016/0013-4686(85)87015-8) / Electrochim. Acta by P Novák (1985)
  37. Kang, Y.-M. et al. A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochim. Acta 50, 3667–3673 (2005). (10.1016/j.electacta.2005.01.012) / Electrochim. Acta by Y-M Kang (2005)
  38. Kutty, T. R. N. & Murthy, A. R. V. Solid state reaction between urea nitrate and tricalcium phosphate. Mechanistic study. Indian J. Technol. 12, 447–450 (1974). / Indian J. Technol. by TRN Kutty (1974)
  39. Dustmann, C.-H. Advances in ZEBRA batteries. J. Power Sources 127, 85–92 (2004). (10.1016/j.jpowsour.2003.09.039) / J. Power Sources by C-H Dustmann (2004)
  40. Kang, K., Meng, Y. S., Bréger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977 (2006). (10.1126/science.1122152) / Science by K Kang (2006)
Dates
Type When
Created 19 years, 2 months ago (June 18, 2006, 1:25 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 2:23 p.m.)
Indexed 2 days, 6 hours ago (Aug. 19, 2025, 6:01 a.m.)
Issued 19 years, 2 months ago (June 18, 2006)
Published 19 years, 2 months ago (June 18, 2006)
Published Online 19 years, 2 months ago (June 18, 2006)
Published Print 19 years, 1 month ago (July 1, 2006)
Funders 0

None

@article{Taberna_2006, title={High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications}, volume={5}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat1672}, DOI={10.1038/nmat1672}, number={7}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Taberna, P. L. and Mitra, S. and Poizot, P. and Simon, P. and Tarascon, J.-M.}, year={2006}, month=jun, pages={567–573} }