Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Schuh, C. A., Mason, J. K., & Lund, A. C. (2005). Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nature Materials, 4(8), 617–621.

Authors 3
  1. C. A. Schuh (first)
  2. J. K. Mason (additional)
  3. A. C. Lund (additional)
References 45 Referenced 406
  1. Gerberich, W. W., Venkataraman, S. K., Huang, H., Harvey, S. E. & Kohlstedt, D. L. The injection of plasticity by millinewton contacts. Acta Metall. Mater. 43, 1569–1576 (1995). (10.1016/0956-7151(94)00351-H) / Acta Metall. Mater. by WW Gerberich (1995)
  2. Gerberich, W. W., Nelson, J. C., Lilleodden, E. T., Anderson, P. & Wyrobek, J. T. Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585–3598 (1996). (10.1016/1359-6454(96)00010-9) / Acta Mater. by WW Gerberich (1996)
  3. Li, J., Van-Vliet, K. J., Zhu, T., Yip, S. & Suresh, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002). (10.1038/nature00865) / Nature by J Li (2002)
  4. Fago, M., Hayes, R. L., Carter, E. A. & Ortiz, M. Density-functional-theory-based local quasicontinuum method: Prediction of dislocation nucleation. Phys. Rev. B 70, 100102 (2004). (10.1103/PhysRevB.70.100102) / Phys. Rev. B by M Fago (2004)
  5. Suresh, S., Nieh, T. G. & Choi, B. W. Nano-indentation of copper thin films on silicon substrates. Scripta Mater. 41, 951–957 (1999). (10.1016/S1359-6462(99)00245-6) / Scripta Mater. by S Suresh (1999)
  6. Knap, J. & Ortiz, M. Effect of indenter-radius size on Au(001) nanoindentation. Phys. Rev. Lett. 90, 226102 (2003). (10.1103/PhysRevLett.90.226102) / Phys. Rev. Lett. by J Knap (2003)
  7. Kelchner, C. L., Plimpton, S. J. & Hamilton, J. C. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998). (10.1103/PhysRevB.58.11085) / Phys. Rev. B by CL Kelchner (1998)
  8. de la Fuente, O. R. et al. Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations. Phys. Rev. Lett. 88, 036101 (2002). (10.1103/PhysRevLett.88.036101) / Phys. Rev. Lett. by OR de la Fuente (2002)
  9. Lilleodden, E. T., Zimmerman, J. A., Foiles, S. M. & Nix, W. D. Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901–920 (2003). (10.1016/S0022-5096(02)00119-9) / J. Mech. Phys. Solids by ET Lilleodden (2003)
  10. Miller, R. E. & Acharya, A. A stress-gradient based criterion for dislocation nucleation in crystals. J. Mech. Phys. Solids 52, 1507–1525 (2004). (10.1016/j.jmps.2004.01.007) / J. Mech. Phys. Solids by RE Miller (2004)
  11. Zhu, T. et al. Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J. Mech. Phys. Solids 52, 691–724 (2004). (10.1016/j.jmps.2003.07.006) / J. Mech. Phys. Solids by T Zhu (2004)
  12. Corcoran, S. G., Colton, R. J., Lilleodden, E. T. & Gerberich, W. W. Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, R16057–R16060 (1997). (10.1103/PhysRevB.55.R16057) / Phys. Rev. B by SG Corcoran (1997)
  13. Kiely, J. D. & Houston, J. E. Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57, 12588–12594 (1998). (10.1103/PhysRevB.57.12588) / Phys. Rev. B by JD Kiely (1998)
  14. Michalske, T. A. & Houston, J. E. Dislocation nucleation at nano-scale contacts. Acta Mater. 46, 391–396 (1998). (10.1016/S1359-6454(97)00270-X) / Acta Mater. by TA Michalske (1998)
  15. Gouldstone, A., Koh, H. -J., Zeng, K. -Y., Giannakopoulos, A. E. & Suresh, S. Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277–2295 (2000). (10.1016/S1359-6454(00)00009-4) / Acta Mater. by A Gouldstone (2000)
  16. Chiu, Y. L. & Ngan, A. H. W. Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599–1611 (2002). (10.1016/S1359-6454(02)00025-3) / Acta Mater. by YL Chiu (2002)
  17. Wo, P. C. & Ngan, A. H. W. Incipient plasticity during nano-scratch in Ni3Al. Phil. Mag. 84, 3145–3157 (2004). (10.1080/14786430410001720354) / Phil. Mag. by PC Wo (2004)
  18. Wo, P. C., Zuo, L. & Ngan, A. H. W. Time-dependent incipient plasticity in Ni3Al as observed in nanoindentation. J. Mater. Res. 20, 489–495 (2005). (10.1557/JMR.2005.0056) / J. Mater. Res. by PC Wo (2005)
  19. Page, T. F., Oliver, W. C. & McHargue, C. J. The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7, 450–473 (1992). (10.1557/JMR.1992.0450) / J. Mater. Res. by TF Page (1992)
  20. Gane, N. & Bowden, F. P. Microdeformation of solids. J. Appl. Phys. 39, 1432–1435 (1968). (10.1063/1.1656376) / J. Appl. Phys. by N Gane (1968)
  21. Chiu, Y. L. & Ngan, A. H. W. A TEM investigation on indentation plastic zones in Ni3Al (Cr, b) single crystals. Acta Mater. 50, 2677–2691 (2002). (10.1016/S1359-6454(02)00100-3) / Acta Mater. by YL Chiu (2002)
  22. Minor, A. M., Morris, J. W. & Stach, E. A. Quantitative in situ nanoindentation in an electron microscope. Appl. Phys. Lett. 79, 1625–1627 (2001). (10.1063/1.1400768) / Appl. Phys. Lett. by AM Minor (2001)
  23. Minor, A. M., Lilleodden, E. T., Stach, E. A. & Morris, J. W. Direct observations of incipient plasticity during nanoindentation of Al. J. Mater. Res. 19, 176–182 (2004). (10.1557/jmr.2004.19.1.176) / J. Mater. Res. by AM Minor (2004)
  24. Wang, W., Jiang, C. B. & Lu, K. Deformation behavior of Ni3Al single crystals during nanoindentation. Acta Mater. 51, 6169–6180 (2003). (10.1016/S1359-6454(03)00436-1) / Acta Mater. by W Wang (2003)
  25. Mann, A. B. & Pethica, J. B. The effect of tip momentum on the contact stiffness and yielding during nanoindentation testing. Phil. Mag. A 79, 577–592 (1999). (10.1080/01418619908210318) / Phil. Mag. A by AB Mann (1999)
  26. Shibutani, Y. & Koyama, A. Surface roughness effects on the displacement bursts observed in nanoindentation. J. Mater. Res. 19, 183–188 (2004). (10.1557/jmr.2004.19.1.183) / J. Mater. Res. by Y Shibutani (2004)
  27. Schuh, C. A. & Lund, A. C. Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 19, 2152–2158 (2004). (10.1557/JMR.2004.0276) / J. Mater. Res. by CA Schuh (2004)
  28. Chinh, N. Q., Horváth, G., Kovács, Z. & Lendvai, J. Characterization of plastic instability steps occurring in depth-sensing indentation tests. Mater. Sci. Eng. A 324, 219–224 (2002). (10.1016/S0921-5093(01)01315-6) / Mater. Sci. Eng. A by NQ Chinh (2002)
  29. Syed-Asif, S. A. & Pethica, J. B. Nanoindentation creep of single-crystal tungsten and gallium arsenide. Phil. Mag. A 76, 1105–1118 (1997). (10.1080/01418619708214217) / Phil. Mag. A by SA Syed-Asif (1997)
  30. Kramer, D. E., Yoder, K. B. & Gerberich, W. W. Surface constrained plasticity: Oxide rupture and the yield point process. Phil. Mag. A 81, 2033–2058 (2001). (10.1080/01418610108216651) / Phil. Mag. A by DE Kramer (2001)
  31. Volinsky, A. A., Moody, N. R. & Gerberich, W. W. Nanoindentation of Au and Pt/Cu thin films at elevated temperatures. J. Mater. Res. 19, 2650–2657 (2004). (10.1557/JMR.2004.0331) / J. Mater. Res. by AA Volinsky (2004)
  32. Lucas, B. N. & Oliver, W. C. Time dependent indentation testing at non-ambient temperatures utilizing the high temperature mechanical properties microprobe. Mater. Res. Soc. Symp. Proc. 356, 645–650 (1995). (10.1557/PROC-356-645) / Mater. Res. Soc. Symp. Proc. by BN Lucas (1995)
  33. Lucas, B. N. & Oliver, W. C. Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601–610 (1999). (10.1007/s11661-999-0051-7) / Metall. Mater. Trans. A by BN Lucas (1999)
  34. Bahr, D. F., Wilson, D. E. & Crowson, D. A. Energy considerations regarding yield points during indentation. J. Mater. Res. 14, 2269–2275 (1999). (10.1557/JMR.1999.0303) / J. Mater. Res. by DF Bahr (1999)
  35. Beake, B. D. & Smith, J. F. High-temperature nanoindentation testing of fused silica and other materials. Phil. Mag. A 82, 2179–2186 (2002). (10.1080/01418610208235727) / Phil. Mag. A by BD Beake (2002)
  36. Xia, J., Li, C. X. & Dong, H. Hot-stage nano-characterizations of an iron aluminide. Mater. Sci. Eng. A 354, 112–120 (2003). (10.1016/S0921-5093(02)00902-4) / Mater. Sci. Eng. A by J Xia (2003)
  37. Smith, J. F. & Zheng, S. High temperature nanoscale mechanical property measurements. Surf. Eng. 16, 143–146 (2000). (10.1179/026708400101517044) / Surf. Eng. by JF Smith (2000)
  38. Lund, A. C., Hodge, A. M. & Schuh, C. A. Incipient plasticity during nanoindentation at elevated temperatures. Appl. Phys. Lett. 85, 1362–1364 (2004). (10.1063/1.1784891) / Appl. Phys. Lett. by AC Lund (2004)
  39. Fischer-Cripps, A. C. Introduction to Contact Mechanics (Springer, New York, 2000). / Introduction to Contact Mechanics by AC Fischer-Cripps (2000)
  40. Hirth, J. P. & Lothe, J. Theory of Dislocations (Wiley, New York, 1982). / Theory of Dislocations by JP Hirth (1982)
  41. Wollenberger, H. in Physical Metallurgy (eds Cahn, R. W. & Haasen, P.) Ch. 18, 1621–1722 (North Holland, Amsterdam, 1996). (10.1016/B978-044489875-3/50023-5) / Physical Metallurgy by H Wollenberger (1996)
  42. Seitz, F. On the formation of dislocations from vacancies. Phys. Rev. 79, 890–891 (1950). (10.1103/PhysRev.79.890) / Phys. Rev. by F Seitz (1950)
  43. Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton, J. C. & Foiles, S. M. Surface step effects on nanoindentation. Phys. Rev. Lett. 87, 165507 (2001). (10.1103/PhysRevLett.87.165507) / Phys. Rev. Lett. by JA Zimmerman (2001)
  44. Conrad, H. in High Strength Materials (ed. Zackay, V. F.) Ch. 11, 436–509 (Wiley, New York, 1965). / High Strength Materials by H Conrad (1965)
  45. Pokluda, J., Cerny, M., Sandera, P. & Sob, M. Calculations of theoretical strength: State of the art and history. J. Comput.-Aided Mater. Design 11, 1–28 (2004). (10.1007/s10820-004-4567-2) / J. Comput.-Aided Mater. Design by J Pokluda (2004)
Dates
Type When
Created 20 years, 1 month ago (July 17, 2005, 2:04 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:04 p.m.)
Indexed 6 days, 12 hours ago (Aug. 21, 2025, 1:17 p.m.)
Issued 20 years, 1 month ago (July 17, 2005)
Published 20 years, 1 month ago (July 17, 2005)
Published Online 20 years, 1 month ago (July 17, 2005)
Published Print 20 years ago (Aug. 1, 2005)
Funders 0

None

@article{Schuh_2005, title={Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments}, volume={4}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat1429}, DOI={10.1038/nmat1429}, number={8}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Schuh, C. A. and Mason, J. K. and Lund, A. C.}, year={2005}, month=jul, pages={617–621} }