Crossref journal-article
Springer Science and Business Media LLC
Nature Materials (297)
Bibliography

Barone, P. W., Baik, S., Heller, D. A., & Strano, M. S. (2004). Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Materials, 4(1), 86–92.

Authors 4
  1. Paul W. Barone (first)
  2. Seunghyun Baik (additional)
  3. Daniel A. Heller (additional)
  4. Michael S. Strano (additional)
References 39 Referenced 907
  1. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996). / Science of Fullerenes and Carbon Nanotubes by MS Dresselhaus (1996)
  2. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998). (10.1142/p080) / Physical Properties of Carbon Nanotubes by R Saito (1998)
  3. Durkop, T., Getty, S. A., Cobas, E. & Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004). (10.1021/nl034841q) / Nano Lett. by T Durkop (2004)
  4. Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003). (10.1073/pnas.0837064100) / Proc. Natl Acad. Sci. USA by RJ Chen (2003)
  5. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002). (10.1126/science.1072631) / Science by MJ O'Connell (2002)
  6. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002). (10.1126/science.1078727) / Science by SM Bachilo (2002)
  7. Hartschuh, A., Pedrosa, H. N., Novotny, L. & Krauss, T. D. Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 301, 1354–1356 (2003). (10.1126/science.1087118) / Science by A Hartschuh (2003)
  8. McCartney, L. J., Pickup, J. C., Rolinski, O. J. & Birch, D. J. S. Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A. Anal. Biochem. 292, 216–221 (2001). (10.1006/abio.2001.5060) / Anal. Biochem. by LJ McCartney (2001)
  9. Salins, L. L. E., Ware, R. A., Ensor, C. M. & Daunert, S. A novel reagentless sensing system for measuring glucose based on the galactose/glucose-binding protein. Anal. Biochem. 294, 19–26 (2001). (10.1006/abio.2001.5131) / Anal. Biochem. by LLE Salins (2001)
  10. Wray, S., Cope, M., Delpy, D., Wyatt, J. & Reynolds, E. Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim. Biophys. Acta 933, 184–192 (1988). (10.1016/0005-2728(88)90069-2) / Biochim. Biophys. Acta by S Wray (1988)
  11. Klonis, N., Quazi, N. H., Deady, L., W., Hughes, A. B. & Tilley, L. Characterization of a series of far-red-absorbing thiobarbituric acid oxonol derivatives as fluorescent probes for biological applications. Anal. Biochem. 317, 47–58 (2003). (10.1016/S0003-2697(03)00086-1) / Anal. Biochem. by N Klonis (2003)
  12. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnol. 22, 93–97 (2004). (10.1038/nbt920) / Nature Biotechnol. by S Kim (2004)
  13. Saxena, V., Sadoqi, M. & Shao, J. Degradation kinetics of indocyanine green in aqueous solution. J. Pharm. Sci. 92, 2090–2097 (2003). (10.1002/jps.10470) / J. Pharm. Sci. by V Saxena (2003)
  14. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Bio. 7, 626–634 (2003). (10.1016/j.cbpa.2003.08.007) / Curr. Opin. Chem. Bio. by JV Frangioni (2003)
  15. Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003). (10.1126/science.1087691) / Science by MS Strano (2003)
  16. Bahr, J. L. & Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12, 1952–1958 (2002). (10.1039/b201013p) / J. Mater. Chem. by JL Bahr (2002)
  17. Bahr, J. L. et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 123, 6536–6542 (2001). (10.1021/ja010462s) / J. Am. Chem. Soc. by JL Bahr (2001)
  18. Strano, M. S. et al. Reversible, band-gap selective protonation of single-walled carbon nanotubes. J. Phys. Chem. B 107, 6979–6985 (2003). (10.1021/jp027664a) / J. Phys. Chem. B by MS Strano (2003)
  19. Strano, M. S. et al. The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3, 81–86 (2003). (10.1166/jnn.2003.194) / J. Nanosci. Nanotechnol. by MS Strano (2003)
  20. Moore, V. C. et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003). (10.1021/nl034524j) / Nano Lett. by VC Moore (2003)
  21. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2, 338–342 (2003). (10.1038/nmat877) / Nature Mater. by M Zheng (2003)
  22. Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003). (10.1126/science.1091911) / Science by M Zheng (2003)
  23. Doorn, S. K., Heller, D. A., Barone, P. W., Usrey, M. L. & Strano, M. S. Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Appl. Phys. A 78, 1147–1155 (2004). (10.1007/s00339-003-2466-0) / Appl. Phys. A by SK Doorn (2004)
  24. Saito, R. et al. Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys. Rev. Lett. 88, 027401 (2002). (10.1103/PhysRevLett.88.027401) / Phys. Rev. Lett. by R Saito (2002)
  25. Saito, R. et al. Double resonance Raman spectra in disordered graphite and single wall carbon nanotubes. Mol. Cryst. Liq. Cryst. 387, 287–296 (2002). / Mol. Cryst. Liq. Cryst. by R Saito (2002)
  26. Saito, R. et al. Chirality-dependent G-band Raman intensity of carbon nanotubes. Phys. Rev. B 64, 085312 (2001). (10.1103/PhysRevB.64.085312) / Phys. Rev. B by R Saito (2001)
  27. Xia, L. & McCreery, R. L. Structure and function of ferricyanide in the formation of chromate conversion coatings on aluminum aircraft alloy. J. Electrochem. Soc. 146, 3696–3701 (1999). (10.1149/1.1392536) / J. Electrochem. Soc. by L Xia (1999)
  28. Okazaki, K., Nakato, Y. & Murakoshi, K. Absolute potential of the Fermi level of isolated single-walled carbon nanotubes. Phys. Rev. B 68, 035434 (2003). (10.1103/PhysRevB.68.035434) / Phys. Rev. B by K Okazaki (2003)
  29. Lu, J., R., Su, T., Georganopoulou, D. & Williams, D. E. Interfacial dissociation and unfolding of glucose oxidase. J. Phys. Chem. B 107, 3954–3962 (2003). (10.1021/jp0272320) / J. Phys. Chem. B by J Lu (2003)
  30. Saal, K. et al. Characterization of glucose oxidase immobilization onto mica carrier by atomic force microscopy and kinetic studies. Biomol. Eng. 19, 195–199 (2002). (10.1016/S1389-0344(02)00044-8) / Biomol. Eng. by K Saal (2002)
  31. Nakano, K., Doi, K., Tamura, K., Katsumi, Y. & Tazaki, M. Self-assembling monolayer formation of glucose oxidase covalently attached on 11-aminoundecanethiol monolayers on gold. Chem. Comm. 1544–1545 (2003). (10.1039/b303298a)
  32. Heller, A. Implanted electrochemical glucose sensors for the management of diabetes. Annu. Rev. Biomed. Eng. 1, 153–175 (1999). (10.1146/annurev.bioeng.1.1.153) / Annu. Rev. Biomed. Eng. by A Heller (1999)
  33. Guiseppi-Elie, A., Lei, C. & Baughman, R. H. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnol. 13, 559–564 (2002). (10.1088/0957-4484/13/5/303) / Nanotechnol. by A Guiseppi-Elie (2002)
  34. Peter, L. M. Dynamic aspects of semiconductor photoelectrochemistry. Chem. Rev. 90, 753–769 (1990). (10.1021/cr00103a005) / Chem. Rev. by LM Peter (1990)
  35. Tantra, R., Hutton, R. S. & Williams, D. E. A biosensor based on transient photoeffects at a silicon electrode. J. Electroanal. Chem. 538, 205–208 (2002). (10.1016/S0022-0728(02)01217-2) / J. Electroanal. Chem. by R Tantra (2002)
  36. Garjonyte, R., Yigzaw, Y., Meskys, R., Malinauskas, A. & Gorton, L. Prussian Blue- and lactate oxidase-based amperometric biosensor for lactic acid. Sensors Actuat. B 79, 33–38 (2001). (10.1016/S0925-4005(01)00845-0) / Sensors Actuat. B by R Garjonyte (2001)
  37. Moscone, D., D'Ottavi, D., Compagnone, D., Palleschi, G. & Amine, A. Construction and analytical characterization of Prussian Blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors. Anal. Chem. 73, 2529–2535 (2001). (10.1021/ac001245x) / Anal. Chem. by D Moscone (2001)
  38. Karyakin, A. A., Karyakina, E. E. & Gorton, L. Amperometric biosensor for glutamate using Prussian Blue-based “artificial peroxidase” as a transducer for hydrogen peroxide. Anal. Chem. 72, 1720–1723 (2000). (10.1021/ac990801o) / Anal. Chem. by AA Karyakin (2000)
  39. Karyakin, A. A., Karyakina, E. E. & Gorton, L. Prussian-Blue-based amperometric biosensors in flow-injection analysis. Talanta 43, 1597–1606 (1996). (10.1016/0039-9140(96)01909-1) / Talanta by AA Karyakin (1996)
Dates
Type When
Created 20 years, 8 months ago (Dec. 12, 2004, 1:22 p.m.)
Deposited 3 years, 1 month ago (July 6, 2022, 3:09 p.m.)
Indexed 3 weeks, 1 day ago (Aug. 6, 2025, 9:05 a.m.)
Issued 20 years, 8 months ago (Dec. 12, 2004)
Published 20 years, 8 months ago (Dec. 12, 2004)
Published Online 20 years, 8 months ago (Dec. 12, 2004)
Published Print 20 years, 7 months ago (Jan. 1, 2005)
Funders 0

None

@article{Barone_2004, title={Near-infrared optical sensors based on single-walled carbon nanotubes}, volume={4}, ISSN={1476-4660}, url={http://dx.doi.org/10.1038/nmat1276}, DOI={10.1038/nmat1276}, number={1}, journal={Nature Materials}, publisher={Springer Science and Business Media LLC}, author={Barone, Paul W. and Baik, Seunghyun and Heller, Daniel A. and Strano, Michael S.}, year={2004}, month=dec, pages={86–92} }