Crossref journal-article
Springer Science and Business Media LLC
Nature Medicine (297)
Bibliography

Hattori, K., Heissig, B., Wu, Y., Dias, S., Tejada, R., Ferris, B., Hicklin, D. J., Zhu, Z., Bohlen, P., Witte, L., Hendrikx, J., Hackett, N. R., Crystal, R. G., Moore, M. A. S., Werb, Z., Lyden, D., & Rafii, S. (2002). Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nature Medicine, 8(8), 841–849.

Authors 17
  1. Koichi Hattori (first)
  2. Beate Heissig (additional)
  3. Yan Wu (additional)
  4. Sergio Dias (additional)
  5. Rafael Tejada (additional)
  6. Barbara Ferris (additional)
  7. Daniel J. Hicklin (additional)
  8. Zhenping Zhu (additional)
  9. Peter Bohlen (additional)
  10. Larry Witte (additional)
  11. Jan Hendrikx (additional)
  12. Neil R. Hackett (additional)
  13. Ronald G. Crystal (additional)
  14. Malcolm A.S. Moore (additional)
  15. Zena Werb (additional)
  16. David Lyden (additional)
  17. Shahin Rafii (additional)
References 42 Referenced 490
  1. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7, 1194–1201 (2001). (10.1038/nm1101-1194) / Nature Med. by D Lyden (2001)
  2. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000). (10.1126/science.287.5459.1804) / Science by T Cheng (2000)
  3. Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–851 (1999). (10.1126/science.283.5403.845) / Science by A Peled (1999)
  4. Heissig, B. et al. Recruitment of stem cells from bone marrow niche requires MMP-9 mediated release of Kit ligand. Cell 109, 625–637(2002). (10.1016/S0092-8674(02)00754-7) / Cell by B Heissig (2002)
  5. Berardi, A.C., Wang, A., Levine, J.D., Lopez, P. & Scadden, D.T. Functional isolation and characterization of human hematopoietic stem cells. Science 267, 104–108 (1995). (10.1126/science.7528940) / Science by AC Berardi (1995)
  6. Phillips, R.L. et al. The genetic program of hematopoietic stem cells. Science 288, 1635–1640 (2000). (10.1126/science.288.5471.1635) / Science by RL Phillips (2000)
  7. Krause, D.S. et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369–377 (2001). (10.1016/S0092-8674(01)00328-2) / Cell by DS Krause (2001)
  8. Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000). (10.1038/35025220) / Nature by P Carmeliet (2000)
  9. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996). (10.1016/S0092-8674(00)80108-7) / Cell by D Hanahan (1996)
  10. Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nature Med. 7, 575–583 (2001). (10.1038/87904) / Nature Med. by P Carmeliet (2001)
  11. Kabrun, N. et al. Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 124, 2039–2048 (1997). (10.1242/dev.124.10.2039) / Development by N Kabrun (1997)
  12. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995). (10.1038/376062a0) / Nature by F Shalaby (1995)
  13. Shalaby, F. et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89, 981–990 (1997). (10.1016/S0092-8674(00)80283-4) / Cell by F Shalaby (1997)
  14. Ziegler, B.L. et al. KDR receptor: A key marker defining hematopoietic stem cells. Science 285, 1553–1558 (1999). (10.1126/science.285.5433.1553) / Science by BL Ziegler (1999)
  15. Haruta, H., Nagata, Y. & Todokoro, K. Role of Flk-1 in mouse hematopoietic stem cells. FEBS Lett. 507, 45–48 (2001). (10.1016/S0014-5793(01)02921-0) / FEBS Lett. by H Haruta (2001)
  16. Fong, G.H., Rossant, J., Gertsenstein, M. & Breitman, M.L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995). (10.1038/376066a0) / Nature by GH Fong (1995)
  17. Fong, G.H., Zhang, L., Bryce, D.M. & Peng, J. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126, 3015–3025 (1999). (10.1242/dev.126.13.3015) / Development by GH Fong (1999)
  18. Hiratsuka, S. et al. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res. 61, 1207–1213 (2001). / Cancer Res. by S Hiratsuka (2001)
  19. Sawano, A. et al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 97, 785–791 (2001). (10.1182/blood.V97.3.785) / Blood by A Sawano (2001)
  20. Clauss, M. et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem. 271, 17629–17634 (1996). (10.1074/jbc.271.30.17629) / J. Biol. Chem. by M Clauss (1996)
  21. Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–3343 (1996). (10.1182/blood.V87.8.3336.bloodjournal8783336) / Blood by B Barleon (1996)
  22. Hattori, K. et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med. 193, 1005–1014 (2001). (10.1084/jem.193.9.1005) / J. Exp. Med. by K Hattori (2001)
  23. Cho, N.K. et al. Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell 108, 865–876 (2002). (10.1016/S0092-8674(02)00676-1) / Cell by NK Cho (2002)
  24. Van Zant, G. Studies of hematopoietic stem cells spared by 5-fluorouracil. J. Exp. Med. 159, 679–690 (1984). (10.1084/jem.159.3.679) / J. Exp. Med. by G Van Zant (1984)
  25. Randall, T.D. & Weissman, I.L. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood 89, 3596–3606 (1997). (10.1182/blood.V89.10.3596) / Blood by TD Randall (1997)
  26. Goodell, M.A. et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Med. 3, 1337–1345 (1997). (10.1038/nm1297-1337) / Nature Med. by MA Goodell (1997)
  27. Briddell, R.A., Hartley, C.A., Smith, K.A. & McNiece, I.K. Recombinant rat stem cell factor synergizes with recombinant human granulocyte colony-stimulating factor in vivo in mice to mobilize peripheral blood progenitor cells that have enhanced repopulating potential. Blood 82, 1720–1723 (1993). (10.1182/blood.V82.6.1720.1720) / Blood by RA Briddell (1993)
  28. Laterveer, L. et al. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood 85, 2269–2275 (1995). (10.1182/blood.V85.8.2269.bloodjournal8582269) / Blood by L Laterveer (1995)
  29. Morrison, S.J. et al. Identification of a lineage of multipotent hematopoietic progenitors. Development 124, 1929–1939 (1997). (10.1242/dev.124.10.1929) / Development by SJ Morrison (1997)
  30. Morrison, S.J., Wright, D.E. & Weissman, I.L. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc. Natl. Acad. Sci. USA 94, 1908–1913 (1997). (10.1073/pnas.94.5.1908) / Proc. Natl. Acad. Sci. USA by SJ Morrison (1997)
  31. Huang, X.L., Takakura, N. & Suda, T. In vitro effects of angiopoietins and VEGF on hematopoietic and endothelial cells. Biochem. Biophys. Res. Commun. 264, 133–138 (1999). (10.1006/bbrc.1999.1472) / Biochem. Biophys. Res. Commun. by XL Huang (1999)
  32. Broxmeyer, H.E. et al. Myeloid progenitor cell regulatory effects of vascular endothelial cell growth factor. Int. J. Hematol. 62, 203–215 (1995). (10.1016/0925-5710(95)00412-2) / Int. J. Hematol. by HE Broxmeyer (1995)
  33. Ratajczak, M.Z. et al. Role of vascular endothelial growth factor (VEGF) and placenta-derived growth factor (PlGF) in regulating human haemopoietic cell growth. Br. J. Haematol. 103, 969–979 (1998). (10.1046/j.1365-2141.1998.01076.x) / Br. J. Haematol. by MZ Ratajczak (1998)
  34. Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95, 952–958 (2000). (10.1182/blood.V95.3.952.003k27_952_958) / Blood by M Peichev (2000)
  35. Dias, S. et al. Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl. Acad. Sci. USA 98, 10857–10862 (2001). (10.1073/pnas.191117498) / Proc Natl. Acad. Sci. USA by S Dias (2001)
  36. Gerber, H.P. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Med. 5, 623–628 (1999). (10.1038/9467) / Nature Med. by HP Gerber (1999)
  37. Vu, T.H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422 (1998). (10.1016/S0092-8674(00)81169-1) / Cell by TH Vu (1998)
  38. Prewett, M. et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res. 59, 5209–52018 (1999). / Cancer Res. by M Prewett (1999)
  39. Zhu, Z. et al. Inhibition of vascular endothelial growth factor-induced receptor activation with anti-kinase insert domain-containing receptor single-chain antibodies from a phage display library. Cancer Res. 58, 3209–3214 (1998). / Cancer Res. by Z Zhu (1998)
  40. Zhu, Z. et al. Inhibition of vascular endothelial growth factor induced mitogenesis of human endothelial cells by a chimeric anti-kinase insert domain- containing receptor antibody. Cancer Lett. 136, 203–213 (1999). (10.1016/S0304-3835(98)00324-3) / Cancer Lett. by Z Zhu (1999)
  41. Witte, L. et al. Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev. 17, 155–161 (1998). (10.1023/A:1006094117427) / Cancer Metastasis Rev. by L Witte (1998)
  42. Hattori, K. et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97, 3354–3360 (2001). (10.1182/blood.V97.11.3354) / Blood by K Hattori (2001)
Dates
Type When
Created 23 years, 1 month ago (July 28, 2002, 5:36 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 6:32 p.m.)
Indexed 2 days, 7 hours ago (Sept. 3, 2025, 7:02 a.m.)
Issued 23 years, 2 months ago (July 1, 2002)
Published 23 years, 2 months ago (July 1, 2002)
Published Online 23 years, 2 months ago (July 1, 2002)
Published Print 23 years, 1 month ago (Aug. 1, 2002)
Funders 0

None

@article{Hattori_2002, title={Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment}, volume={8}, ISSN={1546-170X}, url={http://dx.doi.org/10.1038/nm740}, DOI={10.1038/nm740}, number={8}, journal={Nature Medicine}, publisher={Springer Science and Business Media LLC}, author={Hattori, Koichi and Heissig, Beate and Wu, Yan and Dias, Sergio and Tejada, Rafael and Ferris, Barbara and Hicklin, Daniel J. and Zhu, Zhenping and Bohlen, Peter and Witte, Larry and Hendrikx, Jan and Hackett, Neil R. and Crystal, Ronald G. and Moore, Malcolm A.S. and Werb, Zena and Lyden, David and Rafii, Shahin}, year={2002}, month=jul, pages={841–849} }