Crossref journal-article
Springer Science and Business Media LLC
Nature Medicine (297)
Bibliography

Issaeva, N., Bozko, P., Enge, M., Protopopova, M., Verhoef, L. G. G. C., Masucci, M., Pramanik, A., & Selivanova, G. (2004). Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors. Nature Medicine, 10(12), 1321–1328.

Authors 8
  1. Natalia Issaeva (first)
  2. Przemyslaw Bozko (additional)
  3. Martin Enge (additional)
  4. Marina Protopopova (additional)
  5. Lisette G G C Verhoef (additional)
  6. Maria Masucci (additional)
  7. Aladdin Pramanik (additional)
  8. Galina Selivanova (additional)
References 46 Referenced 589
  1. Vogelstein, B., Lane, D. & Levine, A.J. Surfing the p53 network. Nature 408, 307–310 (2000). (10.1038/35042675) / Nature by B Vogelstein (2000)
  2. Olivier, M. et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 19, 607–614 (2002). (10.1002/humu.10081) / Hum. Mutat. by M Olivier (2002)
  3. Chene, P. Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nat. Rev. Cancer 3, 102–109 (2003). (10.1038/nrc991) / Nat. Rev. Cancer by P Chene (2003)
  4. Prives, C. Signaling to p53: breaking the MDM2-p53 circuit. Cell 95, 5–8 (1998). (10.1016/S0092-8674(00)81774-2) / Cell by C Prives (1998)
  5. Montes de Oca Luna, R., Wagner, D.S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995). (10.1038/378203a0) / Nature by R Montes de Oca Luna (1995)
  6. Vousden, K.H. Activation of the p53 tumor suppressor protein. Biochim. Biophys. Acta 1602, 47–59.(2002). / Biochim. Biophys. Acta by KH Vousden (2002)
  7. Evan, G. & Littlewood, T. A matter of life and cell death. Science 281, 1317–1322 (1998). (10.1126/science.281.5381.1317) / Science by G Evan (1998)
  8. Bottger, A. et al. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr. Biol. 7, 860–869 (1997). (10.1016/S0960-9822(06)00374-5) / Curr. Biol. by A Bottger (1997)
  9. Chene, P. et al. A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. J. Mol. Biol. 299, 245–253 (2000). (10.1006/jmbi.2000.3738) / J. Mol. Biol. by P Chene (2000)
  10. Midgley, C.A. et al. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene 19, 2312–2323 (2000). (10.1038/sj.onc.1203593) / Oncogene by CA Midgley (2000)
  11. Lai, Z. et al. Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors. Proc. Natl. Acad. Sci. USA 99, 14734–14739 (2002). (10.1073/pnas.212428599) / Proc. Natl. Acad. Sci. USA by Z Lai (2002)
  12. Zhao, J. et al. The initial evaluation of non-peptidic small-molecule HDM2 inhibitors based on p53–HDM2 complex structure. Cancer Lett. 183, 69–77 (2002). (10.1016/S0304-3835(02)00084-8) / Cancer Lett. by J Zhao (2002)
  13. Vassilev, L.T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004). (10.1126/science.1092472) / Science by LT Vassilev (2004)
  14. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998). (10.1126/science.282.5393.1497) / Science by F Bunz (1998)
  15. Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 104, 263–269 (1999). (10.1172/JCI6863) / J. Clin. Invest. by F Bunz (1999)
  16. Rigler, R. et al. Specific binding of proinsulin C-peptide to human cell membranes. Proc. Natl. Acad. Sci. USA 96, 13318–13323 (1999). (10.1073/pnas.96.23.13318) / Proc. Natl. Acad. Sci. USA by R Rigler (1999)
  17. Yakovleva, T. et al. p53 Latency. C-terminal domain prevents binding of p53 core to target but not to nonspecific DNA sequences. J. Biol. Chem. 276, 15650–15658 (2001). (10.1074/jbc.M100482200) / J. Biol. Chem. by T Yakovleva (2001)
  18. Wang, L., Grossman, S.R. & Kieff, E. Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc. Natl. Acad. Sci. USA 97, 430–435 (2000). (10.1073/pnas.97.1.430) / Proc. Natl. Acad. Sci. USA by L Wang (2000)
  19. Lin, J., Chen, J., Elenbaas, B. & Levine, A.J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kDa protein. Genes Dev. 8, 1235–1246 (1994). (10.1101/gad.8.10.1235) / Genes Dev. by J Lin (1994)
  20. Kussie, P.H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953. (1996). (10.1126/science.274.5289.948) / Science by PH Kussie (1996)
  21. Burch, L.R., Midgley, C.A., Currie, R.A., Lane, D.P. & Hupp, T.R. Mdm2 binding to a conformationally sensitive domain on p53 can be modulated by RNA. FEBS Lett. 472, 93–98 (2000). (10.1016/S0014-5793(00)01427-7) / FEBS Lett. by LR Burch (2000)
  22. Kanovsky, M. et al. Peptides from the amino terminal mdm-2-binding domain of p53, designed from conformational analysis, are selectively cytotoxic to transformed cells. Proc. Natl. Acad. Sci. USA 98, 12438–12443 (2001). (10.1073/pnas.211280698) / Proc. Natl. Acad. Sci. USA by M Kanovsky (2001)
  23. Gu, W. & Roeder, R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997). (10.1016/S0092-8674(00)80521-8) / Cell by W Gu (1997)
  24. Grossman, S.R. et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300, 342–344 (2003). (10.1126/science.1080386) / Science by SR Grossman (2003)
  25. Bergamaschi, D. et al. iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat. Genet. 33, 162–167 (2003). (10.1038/ng1070) / Nat. Genet. by D Bergamaschi (2003)
  26. Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590 (2003). (10.1016/S1097-2765(03)00050-9) / Mol. Cell by M Mihara (2003)
  27. Nikolaev, A.Y., Li, M., Puskas, N., Qin, J. & Gu, W. Parc: a cytoplasmic anchor for p53. Cell 112, 29–40 (2003). (10.1016/S0092-8674(02)01255-2) / Cell by AY Nikolaev (2003)
  28. Pandhare, J., Dash, C., Rao, M. & Deshpande, V. Slow tight binding inhibition of proteinase K by a proteinaceous inhibitor: conformational alterations responsible for conferring irreversibility to the enzyme-inhibitor complex. J. Biol. Chem. 278, 48735–48744 (2003). (10.1074/jbc.M308976200) / J. Biol. Chem. by J Pandhare (2003)
  29. Jabbur, J.R. et al. Mdm-2 binding and TAF(II)31 recruitment is regulated by hydrogen bond disruption between the p53 residues Thr18 and Asp21. Oncogene 21, 7100–7113 (2002). (10.1038/sj.onc.1205856) / Oncogene by JR Jabbur (2002)
  30. Iyer, N.G. et al. p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc. Natl. Acad. Sci. USA 101, 7386–7391 (2004). (10.1073/pnas.0401002101) / Proc. Natl. Acad. Sci. USA by NG Iyer (2004)
  31. Grossman, S.R. et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol. Cell 2, 405–415 (1998). (10.1016/S1097-2765(00)80140-9) / Mol. Cell by SR Grossman (1998)
  32. Liu, W.L., Midgley, C., Stephen, C., Saville, M. & Lane, D.P. Biological significance of a small highly conserved region in the N terminus of the p53 tumour suppressor protein. J. Mol. Biol. 313, 711–731 (2001). (10.1006/jmbi.2001.5082) / J. Mol. Biol. by WL Liu (2001)
  33. Friedlander, P., Legros, Y., Soussi, T. & Prives, C. Regulation of mutant p53 temperature-sensitive DNA binding. J. Biol. Chem. 271, 25468–25478 (1996). (10.1074/jbc.271.41.25468) / J. Biol. Chem. by P Friedlander (1996)
  34. Hansen, S., Hupp, T.R. & Lane, D.P. Allosteric regulation of the thermostability and DNA binding activity of human p53 by specific interacting proteins. CRC Cell Transformation Group. J. Biol. Chem. 271, 3917–3924 (1996). (10.1074/jbc.271.7.3917) / J. Biol. Chem. by S Hansen (1996)
  35. Cho, Y., Gorina, S., Jeffrey, P.D. & Pavletich, N.P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994). (10.1126/science.8023157) / Science by Y Cho (1994)
  36. Jeffrey, P.D., Gorina, S. & Pavletich, N.P. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267, 1498–14502 (1995). (10.1126/science.7878469) / Science by PD Jeffrey (1995)
  37. Lee, W. et al. Solution structure of the tetrameric minimum transforming domain of p53. Nat. Struct. Biol. 1, 877–890 (1994). (10.1038/nsb1294-877) / Nat. Struct. Biol. by W Lee (1994)
  38. Baker, S.J., Markowitz, S., Fearon, E.R., Willson, J.K. & Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249, 912–915 (1990). (10.1126/science.2144057) / Science by SJ Baker (1990)
  39. D'Orazi, G. et al. Exogenous wt-p53 protein is active in transformed cells but not in their non-transformed counterparts: implications for cancer gene therapy without tumor targeting. J. Gene Med. 2, 11–21 (2000). (10.1002/(SICI)1521-2254(200001/02)2:1<11::AID-JGM81>3.0.CO;2-K) / J. Gene Med. by G D'Orazi (2000)
  40. Nieves-Neira, W. et al. DNA protein cross-links produced by NSC 652287, a novel thiophene derivative active against human renal cancer cells. Mol. Pharmacol. 56, 478–484 (1999). (10.1124/mol.56.3.478) / Mol. Pharmacol. by W Nieves-Neira (1999)
  41. Rivera, M.I. et al. Selective toxicity of the tricyclic thiophene NSC 652287 in renal carcinoma cell lines: differential accumulation and metabolism. Biochem. Pharmacol. 57, 1283–1295 (1999). (10.1016/S0006-2952(99)00046-5) / Biochem. Pharmacol. by MI Rivera (1999)
  42. Selivanova, G. et al. The single-stranded DNA end binding site of p53 coincides with the C- terminal regulatory region. Nucleic Acids Res. 24, 3560–3567 (1996). (10.1093/nar/24.18.3560) / Nucleic Acids Res. by G Selivanova (1996)
  43. Schuhmacher, M. et al. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258 (1999). (10.1016/S0960-9822(99)80507-7) / Curr. Biol. by M Schuhmacher (1999)
  44. Felsher, D.W. & Bishop, J.M. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc. Natl. Acad. Sci. USA 96, 3940–3944 (1999). (10.1073/pnas.96.7.3940) / Proc. Natl. Acad. Sci. USA by DW Felsher (1999)
  45. Vigo, E. et al. CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol. Cell. Biol. 19, 6379–6395 (1999). (10.1128/MCB.19.9.6379) / Mol. Cell. Biol. by E Vigo (1999)
  46. Hengstermann, A., Linares, L.K., Ciechanover, A., Whitaker, N.J. & Scheffner, M. Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc. Natl. Acad. Sci. USA 98, 1218–1223 (2001). (10.1073/pnas.98.3.1218) / Proc. Natl. Acad. Sci. USA by A Hengstermann (2001)
Dates
Type When
Created 20 years, 9 months ago (Nov. 22, 2004, 9:27 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 6:11 p.m.)
Indexed 2 weeks, 1 day ago (Aug. 7, 2025, 4:35 p.m.)
Issued 20 years, 9 months ago (Nov. 21, 2004)
Published 20 years, 9 months ago (Nov. 21, 2004)
Published Online 20 years, 9 months ago (Nov. 21, 2004)
Published Print 20 years, 8 months ago (Dec. 1, 2004)
Funders 0

None

@article{Issaeva_2004, title={Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors}, volume={10}, ISSN={1546-170X}, url={http://dx.doi.org/10.1038/nm1146}, DOI={10.1038/nm1146}, number={12}, journal={Nature Medicine}, publisher={Springer Science and Business Media LLC}, author={Issaeva, Natalia and Bozko, Przemyslaw and Enge, Martin and Protopopova, Marina and Verhoef, Lisette G G C and Masucci, Maria and Pramanik, Aladdin and Selivanova, Galina}, year={2004}, month=nov, pages={1321–1328} }