Crossref journal-article
Springer Science and Business Media LLC
Nature Immunology (297)
Bibliography

Toshchakov, V., Jones, B. W., Perera, P.-Y., Thomas, K., Cody, M. J., Zhang, S., Williams, B. R. G., Major, J., Hamilton, T. A., Fenton, M. J., & Vogel, S. N. (2002). TLR4, but not TLR2, mediates IFN-β–induced STAT1α/β-dependent gene expression in macrophages. Nature Immunology, 3(4), 392–398.

Authors 11
  1. Vladimir Toshchakov (first)
  2. Bryan W. Jones (additional)
  3. Pin-Yu Perera (additional)
  4. Karen Thomas (additional)
  5. M. Joshua Cody (additional)
  6. Shuling Zhang (additional)
  7. Bryan R. G. Williams (additional)
  8. Jennifer Major (additional)
  9. Thomas A. Hamilton (additional)
  10. Matthew J. Fenton (additional)
  11. Stefanie N. Vogel (additional)
References 42 Referenced 652
  1. Heldwein, K. A., Golenbock, D. G. & Fenton, M. J. Recent advances in the biology of Toll-like receptors. Mod. Asp. Immunobiol. 1, 249–252 (2001). / Mod. Asp. Immunobiol. by KA Heldwein (2001)
  2. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001). (10.1038/90609) / Nature Immunol. by S Akira (2001)
  3. Sato, S. et al. Synergy and cross-tolerance between Toll-like receptor (TLR) 2- and TLR4-mediated signaling pathways. J. Immunol. 165, 7096–7101 (2000). (10.4049/jimmunol.165.12.7096) / J. Immunol. by S Sato (2000)
  4. Medvedev, A. E. et al. Induction of tolerance to lipopolysaccharide and mycobacterial components in Chinese Hamster Ovary/CD14 cells is not affected by overexpression of Toll-like receptors 2 or 4. J. Immunol. 167, 2257–2267 (2001). (10.4049/jimmunol.167.4.2257) / J. Immunol. by AE Medvedev (2001)
  5. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999). (10.1016/S1074-7613(00)80086-2) / Immunity by T Kawai (1999)
  6. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR-4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999). (10.4049/jimmunol.162.7.3749) / J. Immunol. by K Hoshino (1999)
  7. Perera, P.-Y. et al. CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and Taxol-inducible gene expression. J. Immunol. 166, 574–581 (2001). (10.4049/jimmunol.166.1.574) / J. Immunol. by P-Y Perera (2001)
  8. Horng, T., Barton, G. M. & Medzhitov, R. . TIRAP: an adapter molecule in the Toll signaling pathway. Nature Immunol. 2, 835–841 (2001). (10.1038/ni0901-835) / Nature Immunol. by T Horng (2001)
  9. Fitzgerald, K. A. et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413, 78–83 (2001). (10.1038/35092578) / Nature by KA Fitzgerald (2001)
  10. Henneke, P. & Golenbock, D. T. TIRAP: how Toll receptors fraternize. Nature Immunol. 2, 828–830 (2001). (10.1038/ni0901-828) / Nature Immunol. by P Henneke (2001)
  11. Meurs, E. F. et al. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62, 379–390 (1990). (10.1016/0092-8674(90)90374-N) / Cell by EF Meurs (1990)
  12. Hirschfeld, M. et al. Signaling by TLR2 vs. TLR4 agonists results in differential gene expression in murine macrophages. Infect. Immun. 69, 2477–2482 (2001). (10.1128/IAI.69.3.1477-1482.2001) / Infect. Immun. by M Hirschfeld (2001)
  13. Jones, B. et al. Different Toll-like receptor agonists induce distinct macrophage responses. J. Leukoc. Biol. 69, 1036–1044 (2001). (10.1189/jlb.69.6.1036) / J. Leukoc. Biol. by B Jones (2001)
  14. Re, F. & Strominger, J. L. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J. Biol. Chem. 276, 37692–37699 (2001). (10.1074/jbc.M105927200) / J. Biol. Chem. by F Re (2001)
  15. DeFranco, A. et al. in Endotoxin in Health and Disease (eds Brade, H., Opal, S. M., Vogel, S. N. & Morrison, D. C.) 473–482 (Marcel Dekker, New York, NY, 1999). / Endotoxin in Health and Disease by A DeFranco (1999)
  16. Kopydlowski, K. M. et al. Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo. J. Immunol. 163, 1537–1544 (1999). (10.4049/jimmunol.163.3.1537) / J. Immunol. by KM Kopydlowski (1999)
  17. Ohmori, Y. & Hamilton, T. A. Requirement for STAT1 in LPS-induced gene expression in macrophages. J. Leukoc. Biol. 69, 598–604 (2001). (10.1189/jlb.69.4.598) / J. Leukoc. Biol. by Y Ohmori (2001)
  18. Gao, J. J. et al. Autocrine/paracrine IFN-αβ mediates the lipopolysaccharide-induced activation of transcription factor STAT1α in mouse macrophages: pivotal role of STAT1α in induction of the inducible nitric oxide synthase gene. J. Immunol. 161, 4803–4810 (1998). (10.4049/jimmunol.161.9.4803) / J. Immunol. by JJ Gao (1998)
  19. Nguyen, H., Hiscott, J. & Pitha, P. M. The growing family of interferon regulatory factors. Cytokine Growth Factors Rev. 8, 293–312 (1997). (10.1016/S1359-6101(97)00019-1) / Cytokine Growth Factors Rev. by H Nguyen (1997)
  20. Vogel, S. N. in Bacterial Endotoxic Lipopolysaccharides Vol. II Immunopharmacology and Pathophysiology (eds Ryan, J. L. & Morrison, D. C.) 165–196 (CRC Press, Boca Raton, 1992). / Bacterial Endotoxic Lipopolysaccharides Vol. II Immunopharmacology and Pathophysiology by SN Vogel (1992)
  21. Barber, S. A., Fultz, M. J., Salkowski, C. A. & Vogel, S. N. Differential expression of interferon regulatory factor 1 (IRF-1), IRF-2, and interferon consensus sequence binding protein genes in lipopolysaccharide (LPS)-responsive and LPS-hyporesponsive macrophages. Infect. Immun. 63, 601–608 (1995). (10.1128/IAI.63.2.601-608.1995) / Infect. Immun. by SA Barber (1995)
  22. Hattori, Y. et al. Effect of cycloheximide on the expression of LPS-inducible iNOS, IFN-β, and IRF-1 genes in J774 macrophages. Biochem. Mol. Biol. Int. 40, 889–896 (1996). / Biochem. Mol. Biol. Int. by Y Hattori (1996)
  23. Fultz, M. J. Barber, S. A., Dieffenbach, C. W. & Vogel, S. N. Induction of IFN-γ in macrophages by lipopolysaccharide. Int. Immunol. 5, 1383–1392 (1993). (10.1093/intimm/5.11.1383) / Int. Immunol. by MJ Fultz (1993)
  24. Sing, A. et al. Bacterial induction of ß interferon in mice is a function of the lipopolysaccharide component. Infect. Immun. 68, 1600–1607 (2000). (10.1128/IAI.68.3.1600-1607.2000) / Infect. Immun. by A Sing (2000)
  25. Weinstein, S. L. et al. Phosphatidylinositol 3-kinase and mTOR mediate lipopolysaccharide-stimulated nitric oxide production in macrophages via interferon-β. J. Leukoc. Biol. 67, 405–414 (2000). (10.1002/jlb.67.3.405) / J. Leukoc. Biol. by SL Weinstein (2000)
  26. Jones, B. W., Heldwein, K. A., Means, T. W., Saukkonen, J. J. & Fenton, M. J. Differential roles of Toll-like receptors in the elicitation of pro-inflammatory responses by macrophages. Ann. Rheum. Dis. (in the press, 2002). (10.1136/ard.60.90003.iii6)
  27. Sato, M., Taniguchi, T. & Tanaka, N. The interferon system and interferon regulatory factor transcription factors – studies from gene knockout mice. Cytokine Growth Factor Rev. 12, 133–142 (2001). (10.1016/S1359-6101(00)00032-0) / Cytokine Growth Factor Rev. by M Sato (2001)
  28. Falvo, J. V., Parekh, B. S., Lin, C. H., Fraenkel, E. & Maniatis, T. Assembly of a functional β interferon enhanceosome is dependent on ATF-2-c-jun heterodimer orientation. Mol. Cell. Biol. 20, 4814–4825 (2000). (10.1128/MCB.20.13.4814-4825.2000) / Mol. Cell. Biol. by JV Falvo (2000)
  29. Taniguchi, T. Regulation of inteferon-β gene: structure and function of cis-elements and trans-acting factors. J. Interferon Res. 9, 633–640 (1989). (10.1089/jir.1989.9.633) / J. Interferon Res. by T Taniguchi (1989)
  30. Matsuyama, T. et al. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell 75, 83–97 (1993). (10.1016/S0092-8674(05)80086-8) / Cell by T Matsuyama (1993)
  31. Servant, M. J. et al. Identification of distinct signaling pathways leading to the phosphorylation of interferon regulatory factor 3. J. Biol. Chem. 276, 355–363 (2001). (10.1074/jbc.M007790200) / J. Biol. Chem. by MJ Servant (2001)
  32. Kawai, T. et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subsent of lipopolysaccharide-inducible genes. J. Immunol. 167, 5887–5894 (2001). (10.4049/jimmunol.167.10.5887) / J. Immunol. by T Kawai (2001)
  33. Senger, K. et al. Gene repression by coactivator repulsion. Mol. Cell 6, 931–937 (2000). (10.1016/S1097-2765(05)00081-X) / Mol. Cell by K Senger (2000)
  34. Leadbetter, E. A. et al. Chromatin/IgG complexes activate autoreactive B cells by dual engagement of sIgM and Toll-like receptors. Nature (in the press, 2002). (10.1038/416603a)
  35. Yang, Y. L. et al. Deficient signaling in mice devoid of double-stranded, RNA-dependent protein kinase. EMBO J. 14, 6095–6106 (1995). (10.1002/j.1460-2075.1995.tb00300.x) / EMBO J. by YL Yang (1995)
  36. Means, T. K. et al. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J. Immunol. 163, 6748–6755 (1999). (10.4049/jimmunol.163.12.6748) / J. Immunol. by TK Means (1999)
  37. Hirschfeld, M., Ma, Y., Weis, J. H., Vogel, S. N. & Weis J. J. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine Toll-like receptor 2. J. Immunol. 165, 618–622 (2000). (10.4049/jimmunol.165.2.618) / J. Immunol. by M Hirschfeld (2000)
  38. Warren T. L. et al. APC stimulated by CpG oligodeoxynucleotide enhance activation of MHC class I-restricted T cells. J. Immunol. 165, 6244–6251 (2000). (10.4049/jimmunol.165.11.6244) / J. Immunol. by TL Warren (2000)
  39. Manthey, C. L., Perera, P.-Y., Salkowski, C. A. & Vogel, S. N. Taxol rovides a second signal for murine macrophage tumoricidal activity. J. Immunol. 153, 825–831 (1994). (10.4049/jimmunol.152.2.825) / J. Immunol. by CL Manthey (1994)
  40. Salkowski, C. A., Detore, G., Franks, A., Falk, M. C. & Vogel, S. N. Pulmonary and hepatic gene expression following cecal ligation and puncture: Monophosphoryl Lipid A prophylaxis attenuates sepsis-induced cytokine and chemokine expression and neutrophil infiltration. Infect. Immun. 66, 3569–3578 (1998). (10.1128/IAI.66.8.3569-3578.1998) / Infect. Immun. by CA Salkowski (1998)
  41. Lin, R., Genin, P., Mamane, Y. & Hiscott, J. Selective DNA binding and association with the CREB binding protein co-activator contribute to differential activation of α/β interferon genes by interferon regulatory factors 3 and 7. Mol. Cell. Biol. 20, 6342–6353 (2000). (10.1128/MCB.20.17.6342-6353.2000) / Mol. Cell. Biol. by R Lin (2000)
  42. Means, T. K. et al. Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J. Immunol. 166, 4074–4082 (2001). (10.4049/jimmunol.166.6.4074) / J. Immunol. by TK Means (2001)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 4:31 a.m.)
Deposited 8 months, 3 weeks ago (Dec. 7, 2024, 5:34 a.m.)
Indexed 2 weeks ago (Aug. 20, 2025, 9:21 a.m.)
Issued 23 years, 5 months ago (March 18, 2002)
Published 23 years, 5 months ago (March 18, 2002)
Published Online 23 years, 5 months ago (March 18, 2002)
Published Print 23 years, 5 months ago (April 1, 2002)
Funders 0

None

@article{Toshchakov_2002, title={TLR4, but not TLR2, mediates IFN-β–induced STAT1α/β-dependent gene expression in macrophages}, volume={3}, ISSN={1529-2916}, url={http://dx.doi.org/10.1038/ni774}, DOI={10.1038/ni774}, number={4}, journal={Nature Immunology}, publisher={Springer Science and Business Media LLC}, author={Toshchakov, Vladimir and Jones, Bryan W. and Perera, Pin-Yu and Thomas, Karen and Cody, M. Joshua and Zhang, Shuling and Williams, Bryan R. G. and Major, Jennifer and Hamilton, Thomas A. and Fenton, Matthew J. and Vogel, Stefanie N.}, year={2002}, month=mar, pages={392–398} }