Crossref journal-article
Springer Science and Business Media LLC
Nature Immunology (297)
Bibliography

Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., & Akira, S. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88–dependent signaling pathway. Nature Immunology, 3(2), 196–200.

Authors 10
  1. Hiroaki Hemmi (first)
  2. Tsuneyasu Kaisho (additional)
  3. Osamu Takeuchi (additional)
  4. Shintaro Sato (additional)
  5. Hideki Sanjo (additional)
  6. Katsuaki Hoshino (additional)
  7. Takao Horiuchi (additional)
  8. Hideyuki Tomizawa (additional)
  9. Kiyoshi Takeda (additional)
  10. Shizuo Akira (additional)
References 49 Referenced 1,996
  1. Medzhitov, R. & Janeway, C. A. Jr Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997). (10.1016/S0092-8674(00)80412-2) / Cell by R Medzhitov (1997)
  2. Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000). (10.1038/35021228) / Nature by A Aderem (2000)
  3. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001). (10.1038/90609) / Nature Immunol. by S Akira (2001)
  4. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998). (10.1126/science.282.5396.2085) / Science by A Poltorak (1998)
  5. Hoshino, K. et al. Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999). (10.4049/jimmunol.162.7.3749) / J. Immunol. by K Hoshino (1999)
  6. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001). (10.1038/35074106) / Nature by F Hayashi (2001)
  7. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000). (10.1038/35047123) / Nature by H Hemmi (2000)
  8. Yoshimura, A. et al. Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163, 1–5 (1999). (10.4049/jimmunol.163.1.1) / J. Immunol. by A Yoshimura (1999)
  9. Brightbill, H. D. et al. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 285, 732–736 (1999). (10.1126/science.285.5428.732) / Science by HD Brightbill (1999)
  10. Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipoproteins through Toll- like receptor-2. Science 285, 736–739 (1999). (10.1126/science.285.5428.736) / Science by AO Aliprantis (1999)
  11. Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999). (10.1038/44605) / Nature by DM Underhill (1999)
  12. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999). (10.1016/S1074-7613(00)80119-3) / Immunity by O Takeuchi (1999)
  13. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl Acad. Sci. USA 97, 13766–13771 (2000). (10.1073/pnas.250476497) / Proc. Natl Acad. Sci. USA by A Ozinsky (2000)
  14. Takeuchi, O. et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13, 933–940 (2001). (10.1093/intimm/13.7.933) / Int. Immunol. by O Takeuchi (2001)
  15. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001). (10.1038/35099560) / Nature by L Alexopoulou (2001)
  16. Imler, J.-L. & Hoffmann, J. A. Signaling mechanisms in the antimicrobial host defense of Drosophila. Curr. Opin. Microbiol. 3, 16–22 (2000). (10.1016/S1369-5274(99)00045-4) / Curr. Opin. Microbiol. by J-L Imler (2000)
  17. Takeuchi, O. et al. Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a Toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164, 554–557 (2000). (10.4049/jimmunol.164.2.554) / J. Immunol. by O Takeuchi (2000)
  18. Häcker, H. et al. Immune cell activation by bacterial CpG-DNA through myeloid differential marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J. Exp. Med. 192, 595–600 (2000). (10.1084/jem.192.4.595) / J. Exp. Med. by H Häcker (2000)
  19. Schnare, M., Holt, A. C., Takeda, K., Akira, S. & Medzhitov R. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr. Biol. 10, 1139–1142 (2000). (10.1016/S0960-9822(00)00700-4) / Curr. Biol. by M Schnare (2000)
  20. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999). (10.1016/S1074-7613(00)80086-2) / Immunity by T Kawai (1999)
  21. Miller, R. L., Gerster, J. F., Owens, M. L., Slade, H. B. & Tomai, M. A. Imiquimod applied topically: a novel immune response modifier and new class of drug. Int. J. Immunopharmacol. 21, 1–14 (1999). (10.1016/S0192-0561(98)00068-X) / Int. J. Immunopharmacol. by RL Miller (1999)
  22. Testerman, T. L. et al. Cytokine induction by the immunomodulators imiquimod and S-27609. J. Leukoc. Biol. 58, 365–372 (1995). (10.1002/jlb.58.3.365) / J. Leukoc. Biol. by TL Testerman (1995)
  23. Weeks, C. E. & Gibson, S. J. Induction of interferon and other cytokines by imiquimod and its hydroxylated metabolite R-842 in human blood cells in vitro. J. Interferon Res. 14, 81–85 (1994). (10.1089/jir.1994.14.81) / J. Interferon Res. by CE Weeks (1994)
  24. Harrison, C. J., Miller, R. L. & Bernstein, D. I. Posttherapy suppression of genital herpes simplex virus (HSV) recurrences and enhancement of HSV-specific T-cell memory by imiquimod in guinea pigs. Antimicrob. Agents Chemother. 38, 2059–2064 (1994). (10.1128/AAC.38.9.2059) / Antimicrob. Agents Chemother. by CJ Harrison (1994)
  25. Chen, M., Griffith, B. P., Lucia, H. L. & Hsiung, G. D. Efficacy of S26308 against guinea pig cytomegalovirus infection. Antimicrob. Agents Chemother. 32, 678–683 (1988). (10.1128/AAC.32.5.678) / Antimicrob. Agents Chemother. by M Chen (1988)
  26. Bernstein, D. I., Harrison, C. J., Tomai, M. A. & Miller, R.L. Daily or weekly therapy with resiquimod (R-848) reduces genital recurrences in herpes simplex virus-infected guinea pigs during and after treatment. J. Infect. Dis. 183, 844–849 (2001). (10.1086/319262) / J. Infect. Dis. by DI Bernstein (2001)
  27. von Krogh, G., Lacey, C. J., Gross, G., Barrasso, R. & Schneider, A. European course on HPV associated pathology: guidelines for primary care physicians for the diagnosis and management of anogenital warts. Sex. Transm. Infect. 76, 162–168 (2000). (10.1136/sti.76.3.162) / Sex. Transm. Infect. by G von Krogh (2000)
  28. Stephenson, J. New therapy promising for genital herpes. J. Am. Med. Assoc. 285, 2182–2183 (2001). (10.1001/jama.285.17.2182-JMN0502-2-1) / J. Am. Med. Assoc. by J Stephenson (2001)
  29. Du, X., Poltorak, A., Wei, Y. & Beutler B. Three novel mammalian Toll-like receptors: gene structure, expression, and evolution. Eur. Cytokine Netw. 11, 362–371 (2000). / Eur. Cytokine Netw. by X Du (2000)
  30. Chuang, T.-H. & Ulevitch, R. J. Cloning and characterization of a sub-family of human Toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur. Cytokine Netw. 11, 372–378 (2000). / Eur. Cytokine Netw. by T-H Chuang (2000)
  31. Wagner, H. Bacterial CpG DNA activates immune cells to signal infectious danger. Adv. Immunol. 73, 329–368 (1999). (10.1016/S0065-2776(08)60790-7) / Adv. Immunol. by H Wagner (1999)
  32. Krieg, A. M. Now I know my CpGs. Trends Microbiol. 9, 249–252 (2001). (10.1016/S0966-842X(01)02039-X) / Trends Microbiol. by AM Krieg (2001)
  33. Krieg, A. M. et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549 (1995). (10.1038/374546a0) / Nature by AM Krieg (1995)
  34. Yamamoto, T. et al. Synthetic oligonucleotides with certain palindromes stimulate interferon production of human peripheral blood lymphocytes in vitro. Jpn. J. Cancer Res. 85, 775–779 (1994). (10.1111/j.1349-7006.1994.tb02947.x) / Jpn. J. Cancer Res. by T Yamamoto (1994)
  35. Verthelyi, D., Ishii, K. J., Gursel, M., Takeshita, F. & Klinman, D. M. Human peripheral blood cells differentially recognize and respond to two distinct CpG motifs. J. Immunol. 166, 2372–2377 (2001). (10.4049/jimmunol.166.4.2372) / J. Immunol. by D Verthelyi (2001)
  36. Tomai, M. A., Imbertson, L. M., Stanczak, T. L., Tygrett, L. T. & Waldschmidt, T. J. The immune response modifiers imiquimod and R-848 are potent activators of B lymphocytes. Cell. Immunol. 203, 55–62 (2000). (10.1006/cimm.2000.1673) / Cell. Immunol. by MA Tomai (2000)
  37. Bishop, G. A. et al. The immune response modifier resiquimod mimics CD40-induced B cell activation. Cell. Immunol. 208, 9–17 (2001). (10.1006/cimm.2001.1769) / Cell. Immunol. by GA Bishop (2001)
  38. Megyeri, K. et al. Stimulation of interferon and cytokine gene expression by imiquimod and stimulation by Sendai virus utilize similar signal transduction pathways. Mol. Cell. Biol. 15, 2207–2218 (1995).
  39. Bishop, G. A. et al. Molecular mechanisms of B lymphocyte activation by the immune response modifier R-848. J. Immunol. 165, 5552–5557 (2000). (10.4049/jimmunol.165.10.5552) / J. Immunol. by GA Bishop (2000)
  40. Bowie, A. et al. A46R and A52R from vaccinia virus are antagonists of host IL-1 and Toll-like receptor signaling. Proc. Natl Acad. Sci. USA 97, 10162–10167 (2000). (10.1073/pnas.160027697) / Proc. Natl Acad. Sci. USA by A Bowie (2000)
  41. Kurt-Jones, E. A. et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunol. 1, 398–401 (2000). (10.1038/80833) / Nature Immunol. by EA Kurt-Jones (2000)
  42. Siegal, F. P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999). (10.1126/science.284.5421.1835) / Science by FP Siegal (1999)
  43. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med. 5, 919–923 (1999). (10.1038/11360) / Nature Med. by M Cella (1999)
  44. Liu, Y.-J., Kanzler, H., Soumelis, V. & Gilliet, M. Dendritic cell lineage, plasticity and cross-regulation. Nature Immunol. 2, 585–589 (2001). (10.1038/89726) / Nature Immunol. by Y-J Liu (2001)
  45. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001). (10.1084/jem.194.6.863) / J. Exp. Med. by N Kadowaki (2001)
  46. Krug, A. et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31, 3026–3037 (2001). (10.1002/1521-4141(2001010)31:10<3026::AID-IMMU3026>3.0.CO;2-H) / Eur. J. Immunol. by A Krug (2001)
  47. Vasilakos, J. P. et al. Adjuvant activities of immune response modifier R-848: comparison with CpG ODN. Cell. Immunol. 204, 64–74 (2000). (10.1006/cimm.2000.1689) / Cell. Immunol. by JP Vasilakos (2000)
  48. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143–150 (1998). (10.1016/S1074-7613(00)80596-8) / Immunity by O Adachi (1998)
  49. Chow, J. C., Young, D. W., Golenbock, D. T., Christ, W. J. & Gusovsky, F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274, 10689–10692 (1999). (10.1074/jbc.274.16.10689) / J. Biol. Chem. by JC Chow (1999)
Dates
Type When
Created 23 years ago (July 26, 2002, 4:30 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 6:50 p.m.)
Indexed 1 day, 20 hours ago (Aug. 23, 2025, 12:58 a.m.)
Issued 23 years, 7 months ago (Jan. 22, 2002)
Published 23 years, 7 months ago (Jan. 22, 2002)
Published Online 23 years, 7 months ago (Jan. 22, 2002)
Published Print 23 years, 6 months ago (Feb. 1, 2002)
Funders 0

None

@article{Hemmi_2002, title={Small anti-viral compounds activate immune cells via the TLR7 MyD88–dependent signaling pathway}, volume={3}, ISSN={1529-2916}, url={http://dx.doi.org/10.1038/ni758}, DOI={10.1038/ni758}, number={2}, journal={Nature Immunology}, publisher={Springer Science and Business Media LLC}, author={Hemmi, Hiroaki and Kaisho, Tsuneyasu and Takeuchi, Osamu and Sato, Shintaro and Sanjo, Hideki and Hoshino, Katsuaki and Horiuchi, Takao and Tomizawa, Hideyuki and Takeda, Kiyoshi and Akira, Shizuo}, year={2002}, month=jan, pages={196–200} }