Crossref journal-article
Springer Science and Business Media LLC
Nature Genetics (297)
Bibliography

McClean, M. N., Mody, A., Broach, J. R., & Ramanathan, S. (2007). Cross-talk and decision making in MAP kinase pathways. Nature Genetics, 39(3), 409–414.

Authors 4
  1. Megan N McClean (first)
  2. Areez Mody (additional)
  3. James R Broach (additional)
  4. Sharad Ramanathan (additional)
References 27 Referenced 120
  1. Hunter, T. & Plowman, G.D. The protein kinases of budding yeast: six score and more. Trends Biochem. Sci. 22, 18–22 (1997). (10.1016/S0968-0004(96)10068-2) / Trends Biochem. Sci. by T Hunter (1997)
  2. Posas, F., Takekawa, M. & Saito, H. Signal transduction by MAP kinase cascades in budding yeast. Curr. Opin. Microbiol. 1, 175–182 (1998). (10.1016/S1369-5274(98)80008-8) / Curr. Opin. Microbiol. by F Posas (1998)
  3. Banuett, F. Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol. Mol. Biol. Rev. 62, 249–274 (1998). (10.1128/MMBR.62.2.249-274.1998) / Microbiol. Mol. Biol. Rev. by F Banuett (1998)
  4. Whitmarsh, A.J. & Davis, R.J. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem. Sci. 23, 481–485 (1998). (10.1016/S0968-0004(98)01309-7) / Trends Biochem. Sci. by AJ Whitmarsh (1998)
  5. Ferrell, J.E. Jr . & Machleder, E.M. The biochemical basis of an all-or-none switch in Xenopus oocytes. Science 280, 895–898 (1998). (10.1126/science.280.5365.895) / Science by JE Ferrell Jr (1998)
  6. Schwartz, M.A. & Madhani, H.D. Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu. Rev. Genet. 38, 725–748 (2004). (10.1146/annurev.genet.39.073003.112634) / Annu. Rev. Genet. by MA Schwartz (2004)
  7. Sprague, G.F. Jr . Control of MAP kinase signaling specificity or how not to go HOG wild. Genes Dev. 12, 2817–2820 (1998). (10.1101/gad.12.18.2817) / Genes Dev. by GF Sprague Jr (1998)
  8. Pryciak, P.M. & Huntress, F.A. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gbetagamma complex underlies activation of the yeast pheromone response pathway. Genes Dev. 12, 2684–2697 (1998). (10.1101/gad.12.17.2684) / Genes Dev. by PM Pryciak (1998)
  9. Choi, K.Y., Satterberg, B., Lyons, D.M. & Elion, E.A. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78, 499–512 (1994). (10.1016/0092-8674(94)90579-7) / Cell by KY Choi (1994)
  10. Posas, F. & Saito, H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702–1705 (1997). (10.1126/science.276.5319.1702) / Science by F Posas (1997)
  11. Harris, K. et al. Role of scaffolds in MAP kinase pathway specificity revealed by custom design of pathway-dedicated signaling proteins. Curr. Biol. 11, 1815–1824 (2001). (10.1016/S0960-9822(01)00567-X) / Curr. Biol. by K Harris (2001)
  12. O'Rourke, S.M. & Herskowitz, I. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev. 12, 2874–2886 (1998). (10.1101/gad.12.18.2874) / Genes Dev. by SM O'Rourke (1998)
  13. Posas, F. & Saito, H. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 17, 1385–1394 (1998). (10.1093/emboj/17.5.1385) / EMBO J. by F Posas (1998)
  14. Posas, F. et al. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1–YPD1-SSK1 “two-component” osmosensor. Cell 86, 865–875 (1996). (10.1016/S0092-8674(00)80162-2) / Cell by F Posas (1996)
  15. O'Rourke, S.M. & Herskowitz, I. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol. Biol. Cell 15, 532–542 (2004). (10.1091/mbc.e03-07-0521) / Mol. Biol. Cell by SM O'Rourke (2004)
  16. Breitkreutz, A. & Tyers, M. MAPK signaling specificity: it takes two to tango. Trends Cell Biol. 12, 254–257 (2002). (10.1016/S0962-8924(02)02284-5) / Trends Cell Biol. by A Breitkreutz (2002)
  17. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998). (10.1146/annurev.biochem.67.1.509) / Annu. Rev. Biochem. by RY Tsien (1998)
  18. Hagen, D.C., McCaffrey, G. & Sprague, G.F. Jr . Pheromone response elements are necessary and sufficient for basal and pheromone-induced transcription of the FUS1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 2952–2961 (1991). (10.1128/MCB.11.6.2952) / Mol. Cell. Biol. by DC Hagen (1991)
  19. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002). (10.1073/pnas.082243699) / Proc. Natl. Acad. Sci. USA by RE Campbell (2002)
  20. Rep, M., Krantz, M., Thevelein, J.M. & Hohmann, S. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol. Chem. 275, 8290–8300 (2000). (10.1074/jbc.275.12.8290) / J. Biol. Chem. by M Rep (2000)
  21. Murray, J.D. Mathematical Biology (Springer, New York, 2002). (10.1007/b98868) / Mathematical Biology by JD Murray (2002)
  22. Hall, J.P. et al. The osmoregulatory pathway represses mating pathway activity in Saccharomyces cerevisiae: isolation of a FUS3 mutant that is insensitive to the repression mechanism. Mol. Cell. Biol. 16, 6715–6723 (1996). (10.1128/MCB.16.12.6715) / Mol. Cell. Biol. by JP Hall (1996)
  23. Xiong, W. & Ferrell, J.E. Jr . A positive-feedback-based bistable 'memory module' that governs cell fate decision. Nature 426, 460–465 (2003). (10.1038/nature02089) / Nature by W Xiong (2003)
  24. Zhu, H. et al. Analysis of yeast protein kinases using protein chips. Nat. Genet. 26, 283–289 (2000). (10.1038/81576) / Nat. Genet. by H Zhu (2000)
  25. Philips, J. & Herskowitz, I. Osmotic balance regulates cell fusion during mating in Saccharomyces cerevisiae. J. Cell Biol. 138, 961–974 (1997). (10.1083/jcb.138.5.961) / J. Cell Biol. by J Philips (1997)
  26. Gimeno, C.J., Ljungdahl, P.O., Styles, C.A. & Fink, G.R. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077–1090 (1992). (10.1016/0092-8674(92)90079-R) / Cell by CJ Gimeno (1992)
  27. Bhattacharyya, R.P. et al. The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 311, 822–826 (2006). (10.1126/science.1120941) / Science by RP Bhattacharyya (2006)
Dates
Type When
Created 18 years, 7 months ago (Jan. 28, 2007, 1:20 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 6:13 p.m.)
Indexed 11 months, 2 weeks ago (Sept. 20, 2024, 11:45 a.m.)
Issued 18 years, 7 months ago (Jan. 28, 2007)
Published 18 years, 7 months ago (Jan. 28, 2007)
Published Online 18 years, 7 months ago (Jan. 28, 2007)
Published Print 18 years, 6 months ago (March 1, 2007)
Funders 0

None

@article{McClean_2007, title={Cross-talk and decision making in MAP kinase pathways}, volume={39}, ISSN={1546-1718}, url={http://dx.doi.org/10.1038/ng1957}, DOI={10.1038/ng1957}, number={3}, journal={Nature Genetics}, publisher={Springer Science and Business Media LLC}, author={McClean, Megan N and Mody, Areez and Broach, James R and Ramanathan, Sharad}, year={2007}, month=jan, pages={409–414} }