Crossref journal-article
Springer Science and Business Media LLC
Nature Genetics (297)
Authors 13
  1. Yeshayahu Schlesinger (first)
  2. Ravid Straussman (additional)
  3. Ilana Keshet (additional)
  4. Shlomit Farkash (additional)
  5. Merav Hecht (additional)
  6. Joseph Zimmerman (additional)
  7. Eran Eden (additional)
  8. Zohar Yakhini (additional)
  9. Etti Ben-Shushan (additional)
  10. Benjamin E Reubinoff (additional)
  11. Yehudit Bergman (additional)
  12. Itamar Simon (additional)
  13. Howard Cedar (additional)
References 30 Referenced 998
  1. Keshet, I. et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat. Genet. 38, 149–153 (2006). (10.1038/ng1719) / Nat. Genet. by I Keshet (2006)
  2. Lee, T.I. et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125, 301–313 (2006). (10.1016/j.cell.2006.02.043) / Cell by TI Lee (2006)
  3. Bracken, A.P., Dietrich, N., Pasini, D., Hansen, K.H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006). (10.1101/gad.381706) / Genes Dev. by AP Bracken (2006)
  4. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2005). (10.1038/nature04431) / Nature by E Vire (2005)
  5. Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature 371, 435–438 (1994). (10.1038/371435a0) / Nature by M Brandeis (1994)
  6. Gidekel, S. & Bergman, Y. A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element. J. Biol. Chem. 277, 34521–34530 (2002). (10.1074/jbc.M203338200) / J. Biol. Chem. by S Gidekel (2002)
  7. Lock, L.F., Takagi, N. & Martin, G.R. Methylation of the HPRT gene on the inactive X occurs after chromosome inactivation. Cell 48, 39–46 (1987). (10.1016/0092-8674(87)90353-9) / Cell by LF Lock (1987)
  8. Feldman, N. et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat. Cell Biol. 8, 188–194 (2006). (10.1038/ncb1353) / Nat. Cell Biol. by N Feldman (2006)
  9. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003). (10.1126/science.1084274) / Science by K Plath (2003)
  10. Silva, J. et al. Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev. Cell 4, 481–495 (2003). (10.1016/S1534-5807(03)00068-6) / Dev. Cell by J Silva (2003)
  11. Cao, R. & Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 14, 155–164 (2004). (10.1016/j.gde.2004.02.001) / Curr. Opin. Genet. Dev. by R Cao (2004)
  12. Squazzo, S.L. et al. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 16, 890–900 (2006). (10.1101/gr.5306606) / Genome Res. by SL Squazzo (2006)
  13. Zardo, G. et al. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat. Genet. 32, 453–458 (2002). (10.1038/ng1007) / Nat. Genet. by G Zardo (2002)
  14. Rush, L.J. & Plass, C. Restriction landmark genomic scanning for DNA methylation in cancer: past, present, and future applications. Anal. Biochem. 307, 191–201 (2002). (10.1016/S0003-2697(02)00033-7) / Anal. Biochem. by LJ Rush (2002)
  15. Alaminos, M., Davalos, V., Cheung, N.K., Gerald, W.L. & Esteller, M. Clustering of gene hypermethylation associated with clinical risk groups in neuroblastoma. J. Natl. Cancer Inst. 96, 1208–1219 (2004). (10.1093/jnci/djh224) / J. Natl. Cancer Inst. by M Alaminos (2004)
  16. Bestor, T.H. The DNA methyltransferases of mammals. Hum. Mol. Genet. 9, 2395–2402 (2000). (10.1093/hmg/9.16.2395) / Hum. Mol. Genet. by TH Bestor (2000)
  17. Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295, 1079–1082 (2002). (10.1126/science.1065173) / Science by L Di Croce (2002)
  18. Jones, P.A. & Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428 (2002). (10.1038/nrg816) / Nat. Rev. Genet. by PA Jones (2002)
  19. Wong, D.J., Foster, S.A., Galloway, D.A. & Reid, B.J. Progressive region-specific de novo methylation of the p16 CpG island in primary human mammary epithelial cell strains during escape from M0 growth arrest. Mol. Cell. Biol. 19, 5642–5651 (1999). (10.1128/MCB.19.8.5642) / Mol. Cell. Biol. by DJ Wong (1999)
  20. Esteller, M. et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum. Mol. Genet. 10, 3001–3007 (2001). (10.1093/hmg/10.26.3001) / Hum. Mol. Genet. by M Esteller (2001)
  21. Boyer, L.A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006). (10.1038/nature04733) / Nature by LA Boyer (2006)
  22. McGarvey, K.M. et al. Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res. 66, 3541–3549 (2006). (10.1158/0008-5472.CAN-05-2481) / Cancer Res. by KM McGarvey (2006)
  23. De Marzo, A.M. et al. Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res. 59, 3855–3860 (1999). / Cancer Res. by AM De Marzo (1999)
  24. Robertson, K.D. et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 27, 2291–2298 (1999). (10.1093/nar/27.11.2291) / Nucleic Acids Res. by KD Robertson (1999)
  25. Feltus, F.A., Lee, E.K., Costello, J.F., Plass, C. & Vertino, P.M. Predicting aberrant CpG island methylation. Proc. Natl. Acad. Sci. USA 100, 12253–12258 (2003). (10.1073/pnas.2037852100) / Proc. Natl. Acad. Sci. USA by FA Feltus (2003)
  26. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002). (10.1038/nature01075) / Nature by S Varambally (2002)
  27. Bracken, A.P. et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335 (2003). (10.1093/emboj/cdg542) / EMBO J. by AP Bracken (2003)
  28. Nguyen, C. et al. Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells. J. Natl. Cancer Inst. 93, 1465–1472 (2001). (10.1093/jnci/93.19.1465) / J. Natl. Cancer Inst. by C Nguyen (2001)
  29. Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 (2000). (10.1038/74447) / Nat. Biotechnol. by BE Reubinoff (2000)
  30. Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol. Cell 15, 57–67 (2004). (10.1016/j.molcel.2004.06.020) / Mol. Cell by R Cao (2004)
Dates
Type When
Created 18 years, 8 months ago (Jan. 2, 2007, 2:32 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 6:13 p.m.)
Indexed 8 hours, 2 minutes ago (Sept. 6, 2025, 3:58 p.m.)
Issued 18 years, 8 months ago (Dec. 31, 2006)
Published 18 years, 8 months ago (Dec. 31, 2006)
Published Online 18 years, 8 months ago (Dec. 31, 2006)
Published Print 18 years, 7 months ago (Feb. 1, 2007)
Funders 0

None

@article{Schlesinger_2006, title={Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer}, volume={39}, ISSN={1546-1718}, url={http://dx.doi.org/10.1038/ng1950}, DOI={10.1038/ng1950}, number={2}, journal={Nature Genetics}, publisher={Springer Science and Business Media LLC}, author={Schlesinger, Yeshayahu and Straussman, Ravid and Keshet, Ilana and Farkash, Shlomit and Hecht, Merav and Zimmerman, Joseph and Eden, Eran and Yakhini, Zohar and Ben-Shushan, Etti and Reubinoff, Benjamin E and Bergman, Yehudit and Simon, Itamar and Cedar, Howard}, year={2006}, month=dec, pages={232–236} }