Crossref journal-article
Springer Science and Business Media LLC
Nature Genetics (297)
Bibliography

Dutrow, N., Nix, D. A., Holt, D., Milash, B., Dalley, B., Westbroek, E., Parnell, T. J., & Cairns, B. R. (2008). Dynamic transcriptome of Schizosaccharomyces pombe shown by RNA-DNA hybrid mapping. Nature Genetics, 40(8), 977–986.

Authors 8
  1. Natalie Dutrow (first)
  2. David A Nix (additional)
  3. Derick Holt (additional)
  4. Brett Milash (additional)
  5. Brian Dalley (additional)
  6. Erick Westbroek (additional)
  7. Timothy J Parnell (additional)
  8. Bradley R Cairns (additional)
References 38 Referenced 92
  1. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007). (10.1038/nature05874) / Nature by E Birney (2007)
  2. Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2002). (10.1038/nature01266) / Nature by Y Okazaki (2002)
  3. David, L. et al. A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. USA 103, 5320–5325 (2006). (10.1073/pnas.0601091103) / Proc. Natl. Acad. Sci. USA by L David (2006)
  4. Washietl, S., Hofacker, I.L., Lukasser, M., Huttenhofer, A. & Stadler, P.F. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat. Biotechnol. 23, 1383–1390 (2005). (10.1038/nbt1144) / Nat. Biotechnol. by S Washietl (2005)
  5. Kampa, D. et al. Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res. 14, 331–342 (2004). (10.1101/gr.2094104) / Genome Res. by D Kampa (2004)
  6. Steigele, S., Huber, W., Stocsits, C., Stadler, P.F. & Nieselt, K. Comparative analysis of structured RNAs in S. cerevisiae indicates a multitude of different functions. BMC Biol. 5, 25 (2007). (10.1186/1741-7007-5-25) / BMC Biol. by S Steigele (2007)
  7. Struhl, K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat. Struct. Mol. Biol. 14, 103–105 (2007). (10.1038/nsmb0207-103) / Nat. Struct. Mol. Biol. by K Struhl (2007)
  8. Perocchi, F., Xu, Z., Clauder-Munster, S. & Steinmetz, L.M. Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D. Nucleic Acids Res. 35, e128 (2007). (10.1093/nar/gkm683) / Nucleic Acids Res. by F Perocchi (2007)
  9. Hu, Z., Zhang, A., Storz, G., Gottesman, S. & Leppla, S.H. An antibody-based microarray assay for small RNA detection. Nucleic Acids Res. 34, e52 (2006). (10.1093/nar/gkl142) / Nucleic Acids Res. by Z Hu (2006)
  10. Boguslawski, S.J. et al. Characterization of monoclonal antibody to DNA.RNA and its application to immunodetection of hybrids. J. Immunol. Methods 89, 123–130 (1986). (10.1016/0022-1759(86)90040-2) / J. Immunol. Methods by SJ Boguslawski (1986)
  11. Kapranov, P., Willingham, A.T. & Gingeras, T.R. Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 8, 413–423 (2007). (10.1038/nrg2083) / Nat. Rev. Genet. by P Kapranov (2007)
  12. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007). (10.1126/science.1138341) / Science by P Kapranov (2007)
  13. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002). (10.1038/nature724) / Nature by V Wood (2002)
  14. Leonardi, J., Box, J.A., Bunch, J.T. & Baumann, P. TER1, the RNA subunit of fission yeast telomerase. Nat. Struct. Mol. Biol. 15, 26–33 (2008). (10.1038/nsmb1343) / Nat. Struct. Mol. Biol. by J Leonardi (2008)
  15. Webb, C.J. & Zakian, V.A. Identification and characterization of the Schizosaccharomyces pombe TER1 telomerase RNA. Nat. Struct. Mol. Biol. 15, 34–42 (2008). (10.1038/nsmb1354) / Nat. Struct. Mol. Biol. by CJ Webb (2008)
  16. Gordon, M. et al. Genome-wide dynamics of SAPHIRE, an essential complex for gene activation and chromatin boundaries. Mol. Cell. Biol. 27, 4058–4069 (2007). (10.1128/MCB.02044-06) / Mol. Cell. Biol. by M Gordon (2007)
  17. Chen, D. et al. Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell 14, 214–229 (2003). (10.1091/mbc.e02-08-0499) / Mol. Biol. Cell by D Chen (2003)
  18. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005). (10.1126/science.1112009) / Science by S Katayama (2005)
  19. Nicolas, E. et al. Distinct roles of HDAC complexes in promoter silencing, antisense suppression and DNA damage protection. Nat. Struct. Mol. Biol. 14, 372–380 (2007). (10.1038/nsmb1239) / Nat. Struct. Mol. Biol. by E Nicolas (2007)
  20. Wiren, M. et al. Genomewide analysis of nucleosome density histone acetylation and HDAC function in fission yeast. EMBO J. 24, 2906–2918 (2005). (10.1038/sj.emboj.7600758) / EMBO J. by M Wiren (2005)
  21. Noma, K., Cam, H.P., Maraia, R.J. & Grewal, S.I. A role for TFIIIC transcription factor complex in genome organization. Cell 125, 859–872 (2006). (10.1016/j.cell.2006.04.028) / Cell by K Noma (2006)
  22. Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002). (10.1126/science.1074973) / Science by TA Volpe (2002)
  23. Allshire, R.C., Javerzat, J.P., Redhead, N.J. & Cranston, G. Position effect variegation at fission yeast centromeres. Cell 76, 157–169 (1994). (10.1016/0092-8674(94)90180-5) / Cell by RC Allshire (1994)
  24. Takahashi, K. et al. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol. Biol. Cell 3, 819–835 (1992). (10.1091/mbc.3.7.819) / Mol. Biol. Cell by K Takahashi (1992)
  25. Scott, K.C., White, C.V. & Willard, H.F. An RNA polymerase III-dependent heterochromatin barrier at fission yeast centromere 1. PLoS ONE 2, e1099 (2007). (10.1371/journal.pone.0001099) / PLoS ONE by KC Scott (2007)
  26. Baum, M., Ngan, V.K. & Clarke, L. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol. Biol. Cell 5, 747–761 (1994). (10.1091/mbc.5.7.747) / Mol. Biol. Cell by M Baum (1994)
  27. Partridge, J.F., Scott, K.S., Bannister, A.J., Kouzarides, T. & Allshire, R.C. cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr. Biol. 12, 1652–1660 (2002). (10.1016/S0960-9822(02)01177-6) / Curr. Biol. by JF Partridge (2002)
  28. Steiner, N.C., Hahnenberger, K.M. & Clarke, L. Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci. Mol. Cell. Biol. 13, 4578–4587 (1993). (10.1128/MCB.13.8.4578) / Mol. Cell. Biol. by NC Steiner (1993)
  29. Clarke, L., Amstutz, H., Fishel, B. & Carbon, J. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 83, 8253–8257 (1986). (10.1073/pnas.83.21.8253) / Proc. Natl. Acad. Sci. USA by L Clarke (1986)
  30. Nakaseko, Y., Kinoshita, N. & Yanagida, M. A novel sequence common to the centromere regions of Schizosaccharomyces pombe chromosomes. Nucleic Acids Res. 15, 4705–4715 (1987). (10.1093/nar/15.12.4705) / Nucleic Acids Res. by Y Nakaseko (1987)
  31. Nakaseko, Y., Adachi, Y., Funahashi, S., Niwa, O. & Yanagida, M. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J. 5, 1011–1021 (1986). (10.1002/j.1460-2075.1986.tb04316.x) / EMBO J. by Y Nakaseko (1986)
  32. Motamedi, M.R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004). (10.1016/j.cell.2004.11.034) / Cell by MR Motamedi (2004)
  33. Lindsey-Boltz, L.A. & Sancar, A. RNA polymerase: the most specific damage recognition protein in cellular responses to DNA damage? Proc. Natl. Acad. Sci. USA 104, 13213–13214 (2007). (10.1073/pnas.0706316104) / Proc. Natl. Acad. Sci. USA by LA Lindsey-Boltz (2007)
  34. Cam, H.P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat. Genet. 37, 809–819 (2005). (10.1038/ng1602) / Nat. Genet. by HP Cam (2005)
  35. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004). (10.1126/science.1093686) / Science by A Verdel (2004)
  36. Reinhart, B.J. & Bartel, D.P. Small RNAs correspond to centromere heterochromatic repeats. Science 297, 1831 (2002). (10.1126/science.1077183) / Science by BJ Reinhart (2002)
  37. Kato, H. et al. RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309, 467–469 (2005). (10.1126/science.1114955) / Science by H Kato (2005)
  38. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003). (10.1093/bioinformatics/19.2.185) / Bioinformatics by BM Bolstad (2003)
Dates
Type When
Created 17 years, 1 month ago (July 20, 2008, 2:56 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 4:45 p.m.)
Indexed 1 month ago (July 23, 2025, 8:33 a.m.)
Issued 17 years, 1 month ago (July 20, 2008)
Published 17 years, 1 month ago (July 20, 2008)
Published Online 17 years, 1 month ago (July 20, 2008)
Published Print 17 years ago (Aug. 1, 2008)
Funders 0

None

@article{Dutrow_2008, title={Dynamic transcriptome of Schizosaccharomyces pombe shown by RNA-DNA hybrid mapping}, volume={40}, ISSN={1546-1718}, url={http://dx.doi.org/10.1038/ng.196}, DOI={10.1038/ng.196}, number={8}, journal={Nature Genetics}, publisher={Springer Science and Business Media LLC}, author={Dutrow, Natalie and Nix, David A and Holt, Derick and Milash, Brett and Dalley, Brian and Westbroek, Erick and Parnell, Timothy J and Cairns, Bradley R}, year={2008}, month=jul, pages={977–986} }