Crossref
journal-article
Springer Science and Business Media LLC
Nature Energy (297)
Authors
7
- Jianming Zheng (first)
- Mark H. Engelhard (additional)
- Donghai Mei (additional)
- Shuhong Jiao (additional)
- Bryant J. Polzin (additional)
- Ji-Guang Zhang (additional)
- Wu Xu (additional)
References
31
Referenced
1,227
-
Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).
(
10.1038/nmat4041
) / Nat. Mater. by Y Lu (2014) -
Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).
(
10.1039/C3EE40795K
) / Energy Environ. Sci. by W Xu (2014) -
Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).
(
10.1038/nenergy.2016.10
) / Nat. Energy by K Yan (2016) -
Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626–632 (2016).
(
10.1038/nnano.2016.32
) / Nat. Nanotech. by D Lin (2016) -
Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).
(
10.1021/ja502133j
) / J. Am. Chem. Soc. by R Khurana (2014) - Zhou, D. et al. SiO2 Hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Adv. Energy Mater. 6, 201502214 (2016). / Adv. Energy Mater. by D Zhou (2016)
-
Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015).
(
10.1038/ncomms10101
) / Nat. Commun. by S Choudhury (2015) -
Basile, A., Bhatt, A. I. & O’Mullane, A. P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 7, 11794 (2016).
(
10.1038/ncomms11794
) / Nat. Commun. by A Basile (2016) -
Bhatt, A. I., Best, A. S., Huang, J. & Hollenkamp, A. F. Application of the N-propyl-N-methyl-pyrrolidinium bis(fluorosulfonyl)imide RTIL containing lithium bis(fluorosulfonyl)imide in ionic liquid based lithium batteries. J. Electrochem. Soc. 157, A66–A74 (2010).
(
10.1149/1.3257978
) / J. Electrochem. Soc. by AI Bhatt (2010) -
Basile, A., Hollenkamp, A. F., Bhatt, A. I. & O’Mullane, A. P. Extensive charge–discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes. Electrochem. Commun. 27, 69–72 (2013).
(
10.1016/j.elecom.2012.10.030
) / Electrochem. Commun. by A Basile (2013) -
Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).
(
10.1021/ja312241y
) / J. Am. Chem. Soc. by F Ding (2013) -
Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).
(
10.1038/ncomms7362
) / Nat. Commun. by J Qian (2015) -
Li, N.-W., Yin, Y.-X., Yang, C.-P. & Guo, Y.-G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016).
(
10.1002/adma.201504526
) / Adv. Mater. by N-W Li (2016) -
Kazyak, E., Wood, K. N. & Dasgupta, N. P. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem. Mater. 27, 6457–6462 (2015).
(
10.1021/acs.chemmater.5b02789
) / Chem. Mater. by E Kazyak (2015) -
Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014).
(
10.1021/nl503125u
) / Nano Lett. by K Yan (2014) -
Cheng, X.-B. et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016).
(
10.1002/adma.201506124
) / Adv. Mater. by X-B Cheng (2016) -
Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618–623 (2014).
(
10.1038/nnano.2014.152
) / Nat. Nanotech. by G Zheng (2014) - Zheng, J. et al. Highly stable operation of lithium metal batteries enabled by the formation of a transient high-concentration electrolyte layer. Adv. Energy Mater. 6, 201502151 (2016). / Adv. Energy Mater. by J Zheng (2016)
-
Lu, D. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015).
(
10.1002/aenm.201400993
) / Adv. Energy Mater. by D Lu (2015) -
Xiang, H. et al. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes. J. Power Sources 318, 170–177 (2016).
(
10.1016/j.jpowsour.2016.04.017
) / J. Power Sources by H Xiang (2016) -
Ding, F. et al. Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013).
(
10.1149/2.100310jes
) / J. Electrochem. Soc. by F Ding (2013) -
Ota, H., Sakata, Y., Inoue, A. & Yamaguchi, S. Analysis of vinylene carbonate derived SEI layers on graphite anode. J. Electrochem. Soc. 151, A1659–A1669 (2004).
(
10.1149/1.1785795
) / J. Electrochem. Soc. by H Ota (2004) -
Chan, C. K., Ruffo, R., Hong, S. S. & Cui, Y. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. J. Power Sources 189, 1132–1140 (2009).
(
10.1016/j.jpowsour.2009.01.007
) / J. Power Sources by CK Chan (2009) -
Aurbach, D. et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta 47, 1423–1439 (2002).
(
10.1016/S0013-4686(01)00858-1
) / Electrochim. Acta by D Aurbach (2002) -
Dedryvère, R. et al. Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy: experimental and theoretical study. J. Phys. Chem. B 109, 15868–15875 (2005).
(
10.1021/jp051626k
) / J. Phys. Chem. B by R Dedryvère (2005) -
Eshkenazi, V., Peled, E., Burstein, L. & Golodnitsky, D. XPS analysis of the SEI formed on carbonaceous materials. Solid State Ion. 170, 83–91 (2004).
(
10.1016/S0167-2738(03)00107-3
) / Solid State Ion. by V Eshkenazi (2004) -
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).
(
10.1021/cr030203g
) / Chem. Rev. by K Xu (2004) -
Sloop, S. E., Pugh, J. K., Wang, S., Kerr, J. B. & Kinoshita, K. Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem. Solid-State Lett. 4, A42–A44 (2001).
(
10.1149/1.1353158
) / Electrochem. Solid-State Lett. by SE Sloop (2001) - Frisch, M. J. et al. Gaussian 09 (Gaussian, 2009).
-
Boys, S. F. & Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970).
(
10.1080/00268977000101561
) / Mol. Phys. by SF Boys (1970) -
Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).
(
10.1103/PhysRevB.37.785
) / Phys. Rev. B by C Lee (1988)
Dates
Type | When |
---|---|
Created | 8 years, 5 months ago (March 1, 2017, 10:46 a.m.) |
Deposited | 2 years, 7 months ago (Dec. 22, 2022, 9:34 p.m.) |
Indexed | 1 day, 5 hours ago (Aug. 20, 2025, 9:11 a.m.) |
Issued | 8 years, 5 months ago (March 1, 2017) |
Published | 8 years, 5 months ago (March 1, 2017) |
Published Online | 8 years, 5 months ago (March 1, 2017) |
@article{Zheng_2017, title={Electrolyte additive enabled fast charging and stable cycling lithium metal batteries}, volume={2}, ISSN={2058-7546}, url={http://dx.doi.org/10.1038/nenergy.2017.12}, DOI={10.1038/nenergy.2017.12}, number={3}, journal={Nature Energy}, publisher={Springer Science and Business Media LLC}, author={Zheng, Jianming and Engelhard, Mark H. and Mei, Donghai and Jiao, Shuhong and Polzin, Bryant J. and Zhang, Ji-Guang and Xu, Wu}, year={2017}, month=mar }