Crossref journal-article
Springer Science and Business Media LLC
Nature Energy (297)
Bibliography

Tikekar, M. D., Choudhury, S., Tu, Z., & Archer, L. A. (2016). Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy, 1(9).

Authors 4
  1. Mukul D. Tikekar (first)
  2. Snehashis Choudhury (additional)
  3. Zhengyuan Tu (additional)
  4. Lynden A. Archer (additional)
References 53 Referenced 1,563
  1. Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976). (10.1126/science.192.4244.1126) / Science by MS Whittingham (1976)
  2. Fleury, V., Chazalviel, J.-N. & Rosso, M. Coupling of drift, diffusion, and electroconvection, in the vicinity of growing electrodeposits. Phys. Rev. E 48, 1279–1295 (1993). (10.1103/PhysRevE.48.1279) / Phys. Rev. E by V Fleury (1993)
  3. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002). (10.1016/S0167-2738(02)00080-2) / Solid State Ionics by D Aurbach (2002)
  4. Sawada, Y., Dougherty, A. & Gollub, J. P. Dendritic and fractal patterns in electrolytic metal deposits. Phys. Rev. Lett. 56, 1260–1263 (1986). (10.1103/PhysRevLett.56.1260) / Phys. Rev. Lett. by Y Sawada (1986)
  5. Rosso, M., Chazalviel, J-N. & Chassaing, E. Calculation of the space charge in electrodeposition from a binary electrolyte. J. Electroanal. Chem. 587, 323–328 (2006). (10.1016/j.jelechem.2005.11.030) / J. Electroanal. Chem. by M Rosso (2006)
  6. Lu, Y., Korf, K. S., Kambe, Y., Tu, Z. & Archer, L. A. Ionic-liquid–nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. Int. Ed. 53, 488–492 (2014). (10.1002/anie.201307137) / Angew. Chem. Int. Ed. by Y Lu (2014)
  7. Aogaki, R. & Makino, T. Theory of powdered metal formation in electrochemistry — morphological instability in galvanostatic crystal growth under diffusion control. Electrochim. Acta 26, 1509–1517 (1981). (10.1016/0013-4686(81)85123-7) / Electrochim. Acta by R Aogaki (1981)
  8. Tikekar, M. D., Archer, L. A. & Koch, D. L. Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161, A847–A855 (2014). (10.1149/2.085405jes) / J. Electrochem. Soc. by MD Tikekar (2014)
  9. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005). (10.1149/1.1850854) / J. Electrochem. Soc. by C Monroe (2005)
  10. Stone, G. M. et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012). (10.1149/2.030203jes) / J. Electrochem. Soc. by GM Stone (2012)
  11. Ozhabes, Y., Gunceler, D. & Arias, T. A. Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. Preprint at http://arxiv.org/abs/1504.05799 (2015).
  12. Tikekar, M. D., Archer, L. A. & Koch, D. L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, E1600320 (2016). (10.1126/sciadv.1600320) / Sci. Adv. by MD Tikekar (2016)
  13. Tu, Z., Nath, P., Lu, Y., Tikekar, M. D. & Archer, L. A. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 48, 2947–2956 (2015). (10.1021/acs.accounts.5b00427) / Acc. Chem. Res. by Z Tu (2015)
  14. Bates, J. B. et al. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53–56, 647–654 (1992). (10.1016/0167-2738(92)90442-R) / Solid State Ionics by JB Bates (1992)
  15. Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S–GeS2–P2S5 system. J. Electrochem. Soc. 148, 742–746 (2001). (10.1149/1.1379028) / J. Electrochem. Soc. by R Kanno (2001)
  16. Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993). (10.1016/0378-7753(93)80106-Y) / J. Power Sources by JB Bates (1993)
  17. De Jonghe, L. C., Feldman, L. & Millett, P. Some geometrical aspects of breakdown of sodium beta alumina. Mater. Res. Bull. 14, 589–595 (1979). (10.1016/0025-5408(79)90040-0) / Mater. Res. Bull. by LC De Jonghe (1979)
  18. Lu, Y. et al. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5, 1402073 (2015). (10.1002/aenm.201402073) / Adv. Energy Mater. by Y Lu (2015)
  19. Song, J., Lee, H., Choo, M.-J., Park, J.-K. & Kim, H.-T. Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci. Rep. 5, 14458 (2015). (10.1038/srep14458) / Sci. Rep. by J Song (2015)
  20. Cheng, X. B. et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016). (10.1002/adma.201506124) / Adv. Mater. by XB Cheng (2016)
  21. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013). (10.1038/nmat3602) / Nat. Mater. by R Bouchet (2013)
  22. Schaefer, J. L., Yanga, D. A. & Archer, L. A. High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 25, 834–839 (2013). (10.1021/cm303091j) / Chem. Mater. by JL Schaefer (2013)
  23. Smith, D. M., Cheng, S., Wang, W., Bunning, T. J. & Li, C. Y. Polymer electrolyte membranes with exceptional conductivity anisotropy via holographic polymerization. J. Power Sources 271, 597–603 (2014). (10.1016/j.jpowsour.2014.07.172) / J. Power Sources by DM Smith (2014)
  24. Chen, Q., Geng, K. & Sieradzki, K. Prospects for dendrite-free cycling of Li metal batteries. J. Electrochem. Soc. 162, A2004–A2007 (2015). (10.1149/2.0261510jes) / J. Electrochem. Soc. by Q Chen (2015)
  25. Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016). (10.1038/ncomms10992) / Nat. Commun. by Y Liu (2016)
  26. Bron, P. et al. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013). (10.1021/ja407393y) / J. Am. Chem. Soc. by P Bron (2013)
  27. Lapp, R., Skaarup, S. & Hooper, A. Ionic conductivity of pure and doped Li3N. Solid State Ionics 11, 97–103 (1983). (10.1016/0167-2738(83)90045-0) / Solid State Ionics by R Lapp (1983)
  28. Tu, Z., Kambe, Y., Lu, Y. & Archer, L. A. Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 4, 1300654 (2014). (10.1002/aenm.201300654) / Adv. Energy Mater. by Z Tu (2014)
  29. Giles, J. R. M., Gray, F. M., Maccallum, J. R. & Vincent, C. A. Synthesis and characterization of ABA block copolymer-based polymer electrolytes. Polymer 28, 1977–1981 (1987). (10.1016/0032-3861(87)90309-0) / Polymer by JRM Giles (1987)
  30. Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014). (10.1021/ja502133j) / J. Am. Chem. Soc. by R Khurana (2014)
  31. Pan, Q., Smith, D. M., Qi, H., Wang, S. & Li, C. Y. Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv. Mater. 27, 5995–6001 (2015). (10.1002/adma.201502059) / Adv. Mater. by Q Pan (2015)
  32. Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015). (10.1038/ncomms10101) / Nat. Commun. by S Choudhury (2015)
  33. Gurevitch, I. et al. Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J. Electrochem. Soc. 160, A1611–A1617 (2013). (10.1149/2.117309jes) / J. Electrochem. Soc. by I Gurevitch (2013)
  34. Tung, S.-O., Ho, S., Yang, M., Zhang, R. & Kotov, N. A. A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 6, 6152 (2015). (10.1038/ncomms7152) / Nat. Commun. by S-O Tung (2015)
  35. Miao, R. et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 271, 291–297 (2014). (10.1016/j.jpowsour.2014.08.011) / J. Power Sources by R Miao (2014)
  36. Qian, J. et. al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015). (10.1038/ncomms7362) / Nat. Commun. by J Qian (2015)
  37. Seh, Z. W., Sun, J., Sun, Y. & Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 1, 449–455 (2015). (10.1021/acscentsci.5b00328) / ACS Cent. Sci. by ZW Seh (2015)
  38. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014). (10.1038/nmat4041) / Nat. Mater. by Y Lu (2014)
  39. Choudhury, S. & Archer, L. A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2, 1500246 (2016). (10.1002/aelm.201500246) / Adv. Electron. Mater. by S Choudhury (2016)
  40. Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013). (10.1021/ja312241y) / J. Am. Chem. Soc. by F Ding (2013)
  41. Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618–623 (2014). (10.1038/nnano.2014.152) / Nat. Nanotech. by G Zheng (2014)
  42. Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015). (10.1021/acsnano.5b02166) / ACS Nano by AC Kozen (2015)
  43. Neudecker, B. J., Dudney, N. J. & Bates, J. B. “Lithium-free” thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517–523 (2000). (10.1149/1.1393226) / J. Electrochem. Soc. by BJ Neudecker (2000)
  44. Sun, Y. et al. High-capacity battery cathode prelithiation to offset initial lithium loss. Nat. Energy 1, 15008 (2016). (10.1038/nenergy.2015.8) / Nat. Energy by Y Sun (2016)
  45. Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010). (10.1038/nmat2764) / Nat. Mater. by R Bhattacharyya (2010)
  46. Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014). (10.1038/nmat3793) / Nat. Mater. by KJ Harry (2014)
  47. Williamson, M., Tromp, R., Vereecken, P., Hull, R. & Ross, F. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater. 2, 532–536 (2003). (10.1038/nmat944) / Nat. Mater. by M Williamson (2003)
  48. White, E. R. et al. In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6, 6308–6317 (2012). (10.1021/nn3017469) / ACS Nano by ER White (2012)
  49. Han, J.-H., Khoo, E., Bai, P. & Bazant, M. Z. Over-limiting current and control of dendritic growth by surface conduction in nanopores. Sci. Rep. 4, 7056 (2014). (10.1038/srep07056) / Sci. Rep. by J-H Han (2014)
  50. Xu, S., Lu, Y., Wang, H., Abruna, H. D. & Archer, L. A. A rechargeable Na-CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes. J. Mater. Chem. A 2, 17723–17729 (2014). (10.1039/C4TA04130E) / J. Mater. Chem. A by S Xu (2014)
  51. Al Sadat, W. I. & Archer, L. A. The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation. Sci. Adv. 2, e1600968 (2016). (10.1126/sciadv.1600968) / Sci. Adv. by WI Al Sadat (2016)
  52. Liu, Q.-C. et al. Artificial protection film on lithium metal anode toward long-cycle life lithium-oxygen batteries. Adv. Mater. 27, 5241–5247 (2015). (10.1002/adma.201501490) / Adv. Mater. by Q-C Liu (2015)
  53. Stark, J. K., Ding, Y. & Kohl, P. A. Nucleation of electrodeposited lithium metal: dendritic growth and the effect of co-deposited sodium. J. Electrochem. Soc. 160, D337–D342 (2013). (10.1149/2.028309jes) / J. Electrochem. Soc. by JK Stark (2013)
Dates
Type When
Created 8 years, 11 months ago (Sept. 8, 2016, 7:42 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 7:22 a.m.)
Indexed 57 minutes ago (Aug. 21, 2025, 12:47 a.m.)
Issued 8 years, 11 months ago (Sept. 8, 2016)
Published 8 years, 11 months ago (Sept. 8, 2016)
Published Online 8 years, 11 months ago (Sept. 8, 2016)
Funders 0

None

@article{Tikekar_2016, title={Design principles for electrolytes and interfaces for stable lithium-metal batteries}, volume={1}, ISSN={2058-7546}, url={http://dx.doi.org/10.1038/nenergy.2016.114}, DOI={10.1038/nenergy.2016.114}, number={9}, journal={Nature Energy}, publisher={Springer Science and Business Media LLC}, author={Tikekar, Mukul D. and Choudhury, Snehashis and Tu, Zhengyuan and Archer, Lynden A.}, year={2016}, month=sep }