Crossref
journal-article
Springer Science and Business Media LLC
Nature Energy (297)
References
53
Referenced
1,563
-
Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).
(
10.1126/science.192.4244.1126
) / Science by MS Whittingham (1976) -
Fleury, V., Chazalviel, J.-N. & Rosso, M. Coupling of drift, diffusion, and electroconvection, in the vicinity of growing electrodeposits. Phys. Rev. E 48, 1279–1295 (1993).
(
10.1103/PhysRevE.48.1279
) / Phys. Rev. E by V Fleury (1993) -
Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405–416 (2002).
(
10.1016/S0167-2738(02)00080-2
) / Solid State Ionics by D Aurbach (2002) -
Sawada, Y., Dougherty, A. & Gollub, J. P. Dendritic and fractal patterns in electrolytic metal deposits. Phys. Rev. Lett. 56, 1260–1263 (1986).
(
10.1103/PhysRevLett.56.1260
) / Phys. Rev. Lett. by Y Sawada (1986) -
Rosso, M., Chazalviel, J-N. & Chassaing, E. Calculation of the space charge in electrodeposition from a binary electrolyte. J. Electroanal. Chem. 587, 323–328 (2006).
(
10.1016/j.jelechem.2005.11.030
) / J. Electroanal. Chem. by M Rosso (2006) -
Lu, Y., Korf, K. S., Kambe, Y., Tu, Z. & Archer, L. A. Ionic-liquid–nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. Int. Ed. 53, 488–492 (2014).
(
10.1002/anie.201307137
) / Angew. Chem. Int. Ed. by Y Lu (2014) -
Aogaki, R. & Makino, T. Theory of powdered metal formation in electrochemistry — morphological instability in galvanostatic crystal growth under diffusion control. Electrochim. Acta 26, 1509–1517 (1981).
(
10.1016/0013-4686(81)85123-7
) / Electrochim. Acta by R Aogaki (1981) -
Tikekar, M. D., Archer, L. A. & Koch, D. L. Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161, A847–A855 (2014).
(
10.1149/2.085405jes
) / J. Electrochem. Soc. by MD Tikekar (2014) -
Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).
(
10.1149/1.1850854
) / J. Electrochem. Soc. by C Monroe (2005) -
Stone, G. M. et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012).
(
10.1149/2.030203jes
) / J. Electrochem. Soc. by GM Stone (2012) - Ozhabes, Y., Gunceler, D. & Arias, T. A. Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression. Preprint at http://arxiv.org/abs/1504.05799 (2015).
-
Tikekar, M. D., Archer, L. A. & Koch, D. L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, E1600320 (2016).
(
10.1126/sciadv.1600320
) / Sci. Adv. by MD Tikekar (2016) -
Tu, Z., Nath, P., Lu, Y., Tikekar, M. D. & Archer, L. A. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 48, 2947–2956 (2015).
(
10.1021/acs.accounts.5b00427
) / Acc. Chem. Res. by Z Tu (2015) -
Bates, J. B. et al. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53–56, 647–654 (1992).
(
10.1016/0167-2738(92)90442-R
) / Solid State Ionics by JB Bates (1992) -
Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S–GeS2–P2S5 system. J. Electrochem. Soc. 148, 742–746 (2001).
(
10.1149/1.1379028
) / J. Electrochem. Soc. by R Kanno (2001) -
Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993).
(
10.1016/0378-7753(93)80106-Y
) / J. Power Sources by JB Bates (1993) -
De Jonghe, L. C., Feldman, L. & Millett, P. Some geometrical aspects of breakdown of sodium beta alumina. Mater. Res. Bull. 14, 589–595 (1979).
(
10.1016/0025-5408(79)90040-0
) / Mater. Res. Bull. by LC De Jonghe (1979) -
Lu, Y. et al. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 5, 1402073 (2015).
(
10.1002/aenm.201402073
) / Adv. Energy Mater. by Y Lu (2015) -
Song, J., Lee, H., Choo, M.-J., Park, J.-K. & Kim, H.-T. Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci. Rep. 5, 14458 (2015).
(
10.1038/srep14458
) / Sci. Rep. by J Song (2015) -
Cheng, X. B. et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016).
(
10.1002/adma.201506124
) / Adv. Mater. by XB Cheng (2016) -
Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).
(
10.1038/nmat3602
) / Nat. Mater. by R Bouchet (2013) -
Schaefer, J. L., Yanga, D. A. & Archer, L. A. High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites. Chem. Mater. 25, 834–839 (2013).
(
10.1021/cm303091j
) / Chem. Mater. by JL Schaefer (2013) -
Smith, D. M., Cheng, S., Wang, W., Bunning, T. J. & Li, C. Y. Polymer electrolyte membranes with exceptional conductivity anisotropy via holographic polymerization. J. Power Sources 271, 597–603 (2014).
(
10.1016/j.jpowsour.2014.07.172
) / J. Power Sources by DM Smith (2014) -
Chen, Q., Geng, K. & Sieradzki, K. Prospects for dendrite-free cycling of Li metal batteries. J. Electrochem. Soc. 162, A2004–A2007 (2015).
(
10.1149/2.0261510jes
) / J. Electrochem. Soc. by Q Chen (2015) -
Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).
(
10.1038/ncomms10992
) / Nat. Commun. by Y Liu (2016) -
Bron, P. et al. Li10SnP2S12: an affordable lithium superionic conductor. J. Am. Chem. Soc. 135, 15694–15697 (2013).
(
10.1021/ja407393y
) / J. Am. Chem. Soc. by P Bron (2013) -
Lapp, R., Skaarup, S. & Hooper, A. Ionic conductivity of pure and doped Li3N. Solid State Ionics 11, 97–103 (1983).
(
10.1016/0167-2738(83)90045-0
) / Solid State Ionics by R Lapp (1983) -
Tu, Z., Kambe, Y., Lu, Y. & Archer, L. A. Nanoporous polymer-ceramic composite electrolytes for lithium metal batteries. Adv. Energy Mater. 4, 1300654 (2014).
(
10.1002/aenm.201300654
) / Adv. Energy Mater. by Z Tu (2014) -
Giles, J. R. M., Gray, F. M., Maccallum, J. R. & Vincent, C. A. Synthesis and characterization of ABA block copolymer-based polymer electrolytes. Polymer 28, 1977–1981 (1987).
(
10.1016/0032-3861(87)90309-0
) / Polymer by JRM Giles (1987) -
Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).
(
10.1021/ja502133j
) / J. Am. Chem. Soc. by R Khurana (2014) -
Pan, Q., Smith, D. M., Qi, H., Wang, S. & Li, C. Y. Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv. Mater. 27, 5995–6001 (2015).
(
10.1002/adma.201502059
) / Adv. Mater. by Q Pan (2015) -
Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015).
(
10.1038/ncomms10101
) / Nat. Commun. by S Choudhury (2015) -
Gurevitch, I. et al. Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J. Electrochem. Soc. 160, A1611–A1617 (2013).
(
10.1149/2.117309jes
) / J. Electrochem. Soc. by I Gurevitch (2013) -
Tung, S.-O., Ho, S., Yang, M., Zhang, R. & Kotov, N. A. A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 6, 6152 (2015).
(
10.1038/ncomms7152
) / Nat. Commun. by S-O Tung (2015) -
Miao, R. et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 271, 291–297 (2014).
(
10.1016/j.jpowsour.2014.08.011
) / J. Power Sources by R Miao (2014) -
Qian, J. et. al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).
(
10.1038/ncomms7362
) / Nat. Commun. by J Qian (2015) -
Seh, Z. W., Sun, J., Sun, Y. & Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 1, 449–455 (2015).
(
10.1021/acscentsci.5b00328
) / ACS Cent. Sci. by ZW Seh (2015) -
Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).
(
10.1038/nmat4041
) / Nat. Mater. by Y Lu (2014) -
Choudhury, S. & Archer, L. A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2, 1500246 (2016).
(
10.1002/aelm.201500246
) / Adv. Electron. Mater. by S Choudhury (2016) -
Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).
(
10.1021/ja312241y
) / J. Am. Chem. Soc. by F Ding (2013) -
Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618–623 (2014).
(
10.1038/nnano.2014.152
) / Nat. Nanotech. by G Zheng (2014) -
Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015).
(
10.1021/acsnano.5b02166
) / ACS Nano by AC Kozen (2015) -
Neudecker, B. J., Dudney, N. J. & Bates, J. B. “Lithium-free” thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 147, 517–523 (2000).
(
10.1149/1.1393226
) / J. Electrochem. Soc. by BJ Neudecker (2000) -
Sun, Y. et al. High-capacity battery cathode prelithiation to offset initial lithium loss. Nat. Energy 1, 15008 (2016).
(
10.1038/nenergy.2015.8
) / Nat. Energy by Y Sun (2016) -
Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).
(
10.1038/nmat2764
) / Nat. Mater. by R Bhattacharyya (2010) -
Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).
(
10.1038/nmat3793
) / Nat. Mater. by KJ Harry (2014) -
Williamson, M., Tromp, R., Vereecken, P., Hull, R. & Ross, F. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater. 2, 532–536 (2003).
(
10.1038/nmat944
) / Nat. Mater. by M Williamson (2003) -
White, E. R. et al. In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6, 6308–6317 (2012).
(
10.1021/nn3017469
) / ACS Nano by ER White (2012) -
Han, J.-H., Khoo, E., Bai, P. & Bazant, M. Z. Over-limiting current and control of dendritic growth by surface conduction in nanopores. Sci. Rep. 4, 7056 (2014).
(
10.1038/srep07056
) / Sci. Rep. by J-H Han (2014) -
Xu, S., Lu, Y., Wang, H., Abruna, H. D. & Archer, L. A. A rechargeable Na-CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes. J. Mater. Chem. A 2, 17723–17729 (2014).
(
10.1039/C4TA04130E
) / J. Mater. Chem. A by S Xu (2014) -
Al Sadat, W. I. & Archer, L. A. The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation. Sci. Adv. 2, e1600968 (2016).
(
10.1126/sciadv.1600968
) / Sci. Adv. by WI Al Sadat (2016) -
Liu, Q.-C. et al. Artificial protection film on lithium metal anode toward long-cycle life lithium-oxygen batteries. Adv. Mater. 27, 5241–5247 (2015).
(
10.1002/adma.201501490
) / Adv. Mater. by Q-C Liu (2015) -
Stark, J. K., Ding, Y. & Kohl, P. A. Nucleation of electrodeposited lithium metal: dendritic growth and the effect of co-deposited sodium. J. Electrochem. Soc. 160, D337–D342 (2013).
(
10.1149/2.028309jes
) / J. Electrochem. Soc. by JK Stark (2013)
Dates
Type | When |
---|---|
Created | 8 years, 11 months ago (Sept. 8, 2016, 7:42 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 7:22 a.m.) |
Indexed | 57 minutes ago (Aug. 21, 2025, 12:47 a.m.) |
Issued | 8 years, 11 months ago (Sept. 8, 2016) |
Published | 8 years, 11 months ago (Sept. 8, 2016) |
Published Online | 8 years, 11 months ago (Sept. 8, 2016) |
@article{Tikekar_2016, title={Design principles for electrolytes and interfaces for stable lithium-metal batteries}, volume={1}, ISSN={2058-7546}, url={http://dx.doi.org/10.1038/nenergy.2016.114}, DOI={10.1038/nenergy.2016.114}, number={9}, journal={Nature Energy}, publisher={Springer Science and Business Media LLC}, author={Tikekar, Mukul D. and Choudhury, Snehashis and Tu, Zhengyuan and Archer, Lynden A.}, year={2016}, month=sep }