Crossref journal-article
Springer Science and Business Media LLC
Nature Energy (297)
Bibliography

Zhu, Z., Kushima, A., Yin, Z., Qi, L., Amine, K., Lu, J., & Li, J. (2016). Anion-redox nanolithia cathodes for Li-ion batteries. Nature Energy, 1(8).

Authors 7 University of Pennsylvania
  1. Zhi Zhu (first)
  2. Akihiro Kushima (additional)
  3. Zongyou Yin (additional)
  4. Lu Qi (additional)
  5. Khalil Amine (additional)
  6. Jun Lu (additional)
  7. Ju Li (additional) University of Pennsylvania
References 32 Referenced 189
  1. Zhu, Z. et al. Precise preparation of high performance spherical hierarchical LiNi0.5Mn1.5O4 for 5 V lithium ion secondary batteries. J. Mater. Chem. A 1, 5492–5496 (2013). (10.1039/c3ta10980a) / J. Mater. Chem. A by Z Zhu (2013)
  2. Zhu, Z. et al. Preparation of 4.7 V cathode material LiNi0.5Mn1.5O4 by an oxalic acid-pretreated solid-state method for lithium-ion secondary battery. J. Power Sources 224, 13–19 (2013). (10.1016/j.jpowsour.2012.09.043) / J. Power Sources by Z Zhu (2013)
  3. Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016). (10.1038/nature16484) / Nature by J Lu (2016)
  4. Lu, J. et al. Aprotic and aqueous Li–O2 batteries. Chem. Rev. 114, 5611–5640 (2014). (10.1021/cr400573b) / Chem. Rev. by J Lu (2014)
  5. Débart, A., Paterson, A. J., Bao, J. & Bruce, P. G. α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. 120, 4597–4600 (2008). (10.1002/ange.200705648) / Angew. Chem. by A Débart (2008)
  6. Adams, B. D. et al. Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci. 6, 1772–1778 (2013). (10.1039/c3ee40697k) / Energy Environ. Sci. by BD Adams (2013)
  7. Kushima, A. et al. Charging/discharging nanomorphology asymmetry and rate-dependent capacity degradation in Li–oxygen battery. Nano Lett. 15, 8260–8265 (2015). (10.1021/acs.nanolett.5b03812) / Nano Lett. by A Kushima (2015)
  8. Lu, Y.-C. et al. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010). (10.1021/ja1036572) / J. Am. Chem. Soc. by Y-C Lu (2010)
  9. Zhai, D. Y. et al. Interfacial effects on lithium superoxide disproportionation in Li–O2 batteries. Nano Lett. 15, 1041–1046 (2015). (10.1021/nl503943z) / Nano Lett. by DY Zhai (2015)
  10. Steininger, H., Lehwald, S. & Ibach, H. Adsorption of oxygen on Pt (111). Surf. Sci. 123, 1–17 (1982). (10.1016/0039-6028(82)90124-8) / Surf. Sci. by H Steininger (1982)
  11. Jones, R. D., Summerville, D. A. & Basolo, F. Synthetic oxygen carriers related to biological systems. Chem. Rev. 79, 139–179 (1979). (10.1021/cr60318a002) / Chem. Rev. by RD Jones (1979)
  12. Qi, L., Qian, X. & Li, J. Near neutrality of an oxygen molecule adsorbed on a Pt (111) surface. Phys. Rev. Lett. 101, 146101 (2008). (10.1103/PhysRevLett.101.146101) / Phys. Rev. Lett. by L Qi (2008)
  13. Cabana, J., Monconduit, L., Larcher, D. & Palacin, M. R. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010). (10.1002/adma.201000717) / Adv. Mater. by J Cabana (2010)
  14. Kang, S., Mo, Y., Ong, S. P. & Ceder, G. A facile mechanism for recharging Li2O2 in Li–O2 batteries. Chem. Mater. 25, 3328–3336 (2013). (10.1021/cm401720n) / Chem. Mater. by S Kang (2013)
  15. Laoire, C. et al. Rechargeable lithium/TEGDME-LiPF6/O2 battery. J. Electrochem. Soc. 158, A302–A308 (2011). (10.1149/1.3531981) / J. Electrochem. Soc. by C Laoire (2011)
  16. Laoire, C. O. et al. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery. J. Phys. Chem. C 114, 9178–9186 (2010). (10.1021/jp102019y) / J. Phys. Chem. C by CO Laoire (2010)
  17. Lu, Y.-C. et al. The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem. Solid-State Lett. 13, A69–A72 (2010). (10.1149/1.3363047) / Electrochem. Solid-State Lett. by Y-C Lu (2010)
  18. Wang, C. et al. Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery. Nano Lett. 15, 1796–1802 (2015). (10.1021/acs.nanolett.5b00112) / Nano Lett. by C Wang (2015)
  19. Okuoka, S.-i. et al. A new sealed lithium–peroxide battery with a co-doped Li2O cathode in a superconcentrated lithium Bis(fluorosulfonyl)amide electrolyte. Sci. Rep. 4, 5684 (2014). (10.1038/srep05684) / Sci. Rep. by S-i Okuoka (2014)
  20. Zhang, L., Zhang, Z.-C. & Amine, K. in Lithium Ion Batteries - New Developments (ed. Belharouak, I. ) (InTech, 2012). / Lithium Ion Batteries - New Developments by L Zhang (2012)
  21. Yang, Z. H. et al. Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328, 1676–1679 (2010). (10.1126/science.1184394) / Science by ZH Yang (2010)
  22. Shin, K. et al. Enhanced mobility of confined polymers. Nature Mater. 6, 961–965 (2007). (10.1038/nmat2031) / Nature Mater. by K Shin (2007)
  23. Ellison, C. J. & Torkelson, J. M. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nature Mater. 2, 695–700 (2003). (10.1038/nmat980) / Nature Mater. by CJ Ellison (2003)
  24. Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nature Chem. 6, 1091–1099 (2014). (10.1038/nchem.2101) / Nature Chem. by L Johnson (2014)
  25. Zhai, D. et al. Raman evidence for late stage disproportionation in a Li–O2 Battery. J. Phys. Chem. Lett. 5, 2705–2710 (2014). (10.1021/jz501323n) / J. Phys. Chem. Lett. by D Zhai (2014)
  26. Zhang, M. et al. Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys. Rev. B 62, 10548–10557 (2000). (10.1103/PhysRevB.62.10548) / Phys. Rev. B by M Zhang (2000)
  27. Lau, K. C., Curtiss, L. A. & Greeley, J. Density functional investigation of the thermodynamic stability of lithium oxide bulk crystalline structures as a function of oxygen pressure. J. Phys. Chem. C 115, 23625–23633 (2011). (10.1021/jp206796h) / J. Phys. Chem. C by KC Lau (2011)
  28. Kao, Y.-H. et al. Overpotential-dependent phase transformation pathways in lithium iron phosphate battery electrodes. Chem. Mater. 22, 5845–5855 (2010). (10.1021/cm101698b) / Chem. Mater. by Y-H Kao (2010)
  29. Li, S. et al. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nature Commun. 6, 7872 (2015). (10.1038/ncomms8872) / Nature Commun. by S Li (2015)
  30. Bryantsev, V. S. & Blanco, M. Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J. Phys. Chem. Lett. 2, 379–383 (2011). (10.1021/jz1016526) / J. Phys. Chem. Lett. by VS Bryantsev (2011)
  31. Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011). (10.1021/ja2021747) / J. Am. Chem. Soc. by SA Freunberger (2011)
  32. Yang, Y. et al. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 10, 1486–1491 (2010). (10.1021/nl100504q) / Nano Lett. by Y Yang (2010)
Dates
Type When
Created 9 years, 1 month ago (July 22, 2016, 8:48 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 7:14 a.m.)
Indexed 3 days, 23 hours ago (Aug. 20, 2025, 9:23 a.m.)
Issued 9 years ago (July 25, 2016)
Published 9 years ago (July 25, 2016)
Published Online 9 years ago (July 25, 2016)
Funders 0

None

@article{Zhu_2016, title={Anion-redox nanolithia cathodes for Li-ion batteries}, volume={1}, ISSN={2058-7546}, url={http://dx.doi.org/10.1038/nenergy.2016.111}, DOI={10.1038/nenergy.2016.111}, number={8}, journal={Nature Energy}, publisher={Springer Science and Business Media LLC}, author={Zhu, Zhi and Kushima, Akihiro and Yin, Zongyou and Qi, Lu and Amine, Khalil and Lu, Jun and Li, Ju}, year={2016}, month=jul }