Crossref journal-article
Springer Science and Business Media LLC
Nature Energy (297)
Bibliography

Sun, Y., Lee, H.-W., Seh, Z. W., Liu, N., Sun, J., Li, Y., & Cui, Y. (2016). High-capacity battery cathode prelithiation to offset initial lithium loss. Nature Energy, 1(1).

Authors 7
  1. Yongming Sun (first)
  2. Hyun-Wook Lee (additional)
  3. Zhi Wei Seh (additional)
  4. Nian Liu (additional)
  5. Jie Sun (additional)
  6. Yuzhang Li (additional)
  7. Yi Cui (additional)
References 35 Referenced 324
  1. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). (10.1038/35104644) / Nature by J-M Tarascon (2001)
  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nature Mater. 11, 19–29 (2012). (10.1038/nmat3191) / Nature Mater. by PG Bruce (2012)
  3. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004). (10.1021/cr020731c) / Chem. Rev. by MS Whittingham (2004)
  4. Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). (10.1021/ja3091438) / J. Am. Chem. Soc. by JB Goodenough (2013)
  5. Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008). (10.1038/451652a) / Nature by M Armand (2008)
  6. Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010). (10.1016/j.electacta.2010.05.072) / Electrochim. Acta by P Verma (2010)
  7. Zaghib, K., Nadeau, G. & Kinoshita, K. Effect of graphite particle size on irreversible capacity loss. J. Electrochem. Soc. 147, 2110–2115 (2000). (10.1149/1.1393493) / J. Electrochem. Soc. by K Zaghib (2000)
  8. Aurbach, D. et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: II. Graphite electrodes. J. Electrochem. Soc. 142, 2882–2890 (1995). (10.1149/1.2048659) / J. Electrochem. Soc. by D Aurbach (1995)
  9. Arakawa, M. & Yamaki, J.-I. The cathodic decomposition of propylene carbonate in lithium batteries. J. Electroanal. Chem. Interfacial Electrochem. 219, 273–280 (1987). (10.1016/0022-0728(87)85045-3) / J. Electroanal. Chem. Interfacial Electrochem. by M Arakawa (1987)
  10. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004). (10.1021/cr030203g) / Chem. Rev. by K Xu (2004)
  11. Matsumura, Y., Wang, S. & Mondori, J. Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries. J. Electrochem. Soc. 142, 2914–2918 (1995). (10.1149/1.2048665) / J. Electrochem. Soc. by Y Matsumura (1995)
  12. Wang, D. Y., Sinha, N. N., Petibon, R., Burns, J. C. & Dahn, J. R. A systematic study of well-known electrolyte additives in LiCoO2/graphite pouch cells. J. Power Sources 251, 311–318 (2014). (10.1016/j.jpowsour.2013.11.064) / J. Power Sources by DY Wang (2014)
  13. Hassoun, J., Lee, K.-S., Sun, Y.-K. & Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 133, 3139–3143 (2011). (10.1021/ja110522x) / J. Am. Chem. Soc. by J Hassoun (2011)
  14. Liu, N., Hu, L. B., McDowell, M. T., Jackson, A. & Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487–6493 (2011). (10.1021/nn2017167) / ACS Nano by N Liu (2011)
  15. Jarvis, C. R., Lain, M. J., Yakovleva, M. V. & Gao, Y. A prelithiated carbon anode for lithium-ion battery applications. J. Power Sources 162, 800–802 (2006). (10.1016/j.jpowsour.2005.07.051) / J. Power Sources by CR Jarvis (2006)
  16. Wang, Z. H. et al. Application of stabilized lithium metal powder (SLMP®) in graphite anode—A high efficient prelithiation method for lithium-ion batteries. J. Power Sources 260, 57–61 (2014). (10.1016/j.jpowsour.2014.02.112) / J. Power Sources by ZH Wang (2014)
  17. Zhao, J. et al. Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents. Nature Commun. 5, 5088 (2014). (10.1038/ncomms6088) / Nature Commun. by J Zhao (2014)
  18. Shanmukaraj, D. et al. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries. Electrochem. Commun. 12, 1344–1347 (2010). (10.1016/j.elecom.2010.07.016) / Electrochem. Commun. by D Shanmukaraj (2010)
  19. Singh, G. et al. An approach to overcome first cycle irreversible capacity in P2-Na2∕3[Fe1∕2Mn1∕2]O2 . Electrochem. Commun. 37, 61–63 (2013). (10.1016/j.elecom.2013.10.008) / Electrochem. Commun. by G Singh (2013)
  20. Kim, M. G. & Cho, J. Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell. J. Mater. Chem. 18, 5880–5887 (2008). (10.1039/b814161d) / J. Mater. Chem. by MG Kim (2008)
  21. Noh, M. & Cho, J. Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic efficiency anode material. J. Electrochem. Soc. 159, A1329–A1334 (2012). (10.1149/2.085208jes) / J. Electrochem. Soc. by M Noh (2012)
  22. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000). (10.1038/35035045) / Nature by P Poizot (2000)
  23. Taberna, P. L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567–573 (2006). (10.1038/nmat1672) / Nature Mater. by PL Taberna (2006)
  24. Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010). (10.1002/adma.201000717) / Adv. Mater. by J Cabana (2010)
  25. Reddy, M. V., Subba Rao, G. V. & Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013). (10.1021/cr3001884) / Chem. Rev. by MV Reddy (2013)
  26. Lou, X. W., Deng, D., Lee, J. Y., Feng, J. & Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20, 258–262 (2008). (10.1002/adma.200702412) / Adv. Mater. by XW Lou (2008)
  27. Wang, H. L. et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978–13980 (2010). (10.1021/ja105296a) / J. Am. Chem. Soc. by HL Wang (2010)
  28. Li, H., Balaya, P. & Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878–A1885 (2004). (10.1149/1.1801451) / J. Electrochem. Soc. by H Li (2004)
  29. Sun, J. P. et al. Overpotential and electrochemical impedance analysis on Cr2O3 thin film and powder electrode in rechargeable lithium batteries. Solid State Ion. 179, 2390–2395 (2008). (10.1016/j.ssi.2008.09.014) / Solid State Ion. by JP Sun (2008)
  30. Wu, Z. Z. et al. Prelithiation activates Li(Ni0.5Mn0.3Co0.2)O2 for high capacity and excellent cycling stability. Nano Lett. 15, 5590–5596 (2015). (10.1021/acs.nanolett.5b02246) / Nano Lett. by ZZ Wu (2015)
  31. Li, H., Richter, G. & Maier, J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. 15, 736–739 (2003). (10.1002/adma.200304574) / Adv. Mater. by H Li (2003)
  32. Hu, Y.-S. et al. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nature Mater. 5, 713–717 (2006). (10.1038/nmat1709) / Nature Mater. by Y-S Hu (2006)
  33. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010). (10.1126/science.1195628) / Science by JY Huang (2010)
  34. McDowell, M. T. et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013). (10.1021/nl3044508) / Nano Lett. by MT McDowell (2013)
  35. Zheng, G. Y., Yang, Y., Cha, J. J., Hong, S. S. & Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11, 4462–4467 (2011). (10.1021/nl2027684) / Nano Lett. by GY Zheng (2011)
Dates
Type When
Created 9 years, 7 months ago (Jan. 11, 2016, 5:16 a.m.)
Deposited 2 years, 7 months ago (Jan. 4, 2023, 7:31 a.m.)
Indexed 22 hours, 13 minutes ago (Aug. 20, 2025, 8:49 a.m.)
Issued 9 years, 7 months ago (Jan. 11, 2016)
Published 9 years, 7 months ago (Jan. 11, 2016)
Published Online 9 years, 7 months ago (Jan. 11, 2016)
Funders 0

None

@article{Sun_2016, title={High-capacity battery cathode prelithiation to offset initial lithium loss}, volume={1}, ISSN={2058-7546}, url={http://dx.doi.org/10.1038/nenergy.2015.8}, DOI={10.1038/nenergy.2015.8}, number={1}, journal={Nature Energy}, publisher={Springer Science and Business Media LLC}, author={Sun, Yongming and Lee, Hyun-Wook and Seh, Zhi Wei and Liu, Nian and Sun, Jie and Li, Yuzhang and Cui, Yi}, year={2016}, month=jan }