Crossref
journal-article
Springer Science and Business Media LLC
Nature Energy (297)
Authors
7
- Yongming Sun (first)
- Hyun-Wook Lee (additional)
- Zhi Wei Seh (additional)
- Nian Liu (additional)
- Jie Sun (additional)
- Yuzhang Li (additional)
- Yi Cui (additional)
References
35
Referenced
324
-
Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
(
10.1038/35104644
) / Nature by J-M Tarascon (2001) -
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li-O2 and Li-S batteries with high energy storage. Nature Mater. 11, 19–29 (2012).
(
10.1038/nmat3191
) / Nature Mater. by PG Bruce (2012) -
Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).
(
10.1021/cr020731c
) / Chem. Rev. by MS Whittingham (2004) -
Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).
(
10.1021/ja3091438
) / J. Am. Chem. Soc. by JB Goodenough (2013) -
Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).
(
10.1038/451652a
) / Nature by M Armand (2008) -
Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).
(
10.1016/j.electacta.2010.05.072
) / Electrochim. Acta by P Verma (2010) -
Zaghib, K., Nadeau, G. & Kinoshita, K. Effect of graphite particle size on irreversible capacity loss. J. Electrochem. Soc. 147, 2110–2115 (2000).
(
10.1149/1.1393493
) / J. Electrochem. Soc. by K Zaghib (2000) -
Aurbach, D. et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries: II. Graphite electrodes. J. Electrochem. Soc. 142, 2882–2890 (1995).
(
10.1149/1.2048659
) / J. Electrochem. Soc. by D Aurbach (1995) -
Arakawa, M. & Yamaki, J.-I. The cathodic decomposition of propylene carbonate in lithium batteries. J. Electroanal. Chem. Interfacial Electrochem. 219, 273–280 (1987).
(
10.1016/0022-0728(87)85045-3
) / J. Electroanal. Chem. Interfacial Electrochem. by M Arakawa (1987) -
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).
(
10.1021/cr030203g
) / Chem. Rev. by K Xu (2004) -
Matsumura, Y., Wang, S. & Mondori, J. Mechanism leading to irreversible capacity loss in Li ion rechargeable batteries. J. Electrochem. Soc. 142, 2914–2918 (1995).
(
10.1149/1.2048665
) / J. Electrochem. Soc. by Y Matsumura (1995) -
Wang, D. Y., Sinha, N. N., Petibon, R., Burns, J. C. & Dahn, J. R. A systematic study of well-known electrolyte additives in LiCoO2/graphite pouch cells. J. Power Sources 251, 311–318 (2014).
(
10.1016/j.jpowsour.2013.11.064
) / J. Power Sources by DY Wang (2014) -
Hassoun, J., Lee, K.-S., Sun, Y.-K. & Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 133, 3139–3143 (2011).
(
10.1021/ja110522x
) / J. Am. Chem. Soc. by J Hassoun (2011) -
Liu, N., Hu, L. B., McDowell, M. T., Jackson, A. & Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487–6493 (2011).
(
10.1021/nn2017167
) / ACS Nano by N Liu (2011) -
Jarvis, C. R., Lain, M. J., Yakovleva, M. V. & Gao, Y. A prelithiated carbon anode for lithium-ion battery applications. J. Power Sources 162, 800–802 (2006).
(
10.1016/j.jpowsour.2005.07.051
) / J. Power Sources by CR Jarvis (2006) -
Wang, Z. H. et al. Application of stabilized lithium metal powder (SLMP®) in graphite anode—A high efficient prelithiation method for lithium-ion batteries. J. Power Sources 260, 57–61 (2014).
(
10.1016/j.jpowsour.2014.02.112
) / J. Power Sources by ZH Wang (2014) -
Zhao, J. et al. Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents. Nature Commun. 5, 5088 (2014).
(
10.1038/ncomms6088
) / Nature Commun. by J Zhao (2014) -
Shanmukaraj, D. et al. Sacrificial salts: Compensating the initial charge irreversibility in lithium batteries. Electrochem. Commun. 12, 1344–1347 (2010).
(
10.1016/j.elecom.2010.07.016
) / Electrochem. Commun. by D Shanmukaraj (2010) -
Singh, G. et al. An approach to overcome first cycle irreversible capacity in P2-Na2∕3[Fe1∕2Mn1∕2]O2 . Electrochem. Commun. 37, 61–63 (2013).
(
10.1016/j.elecom.2013.10.008
) / Electrochem. Commun. by G Singh (2013) -
Kim, M. G. & Cho, J. Air stable Al2O3-coated Li2NiO2 cathode additive as a surplus current consumer in a Li-ion cell. J. Mater. Chem. 18, 5880–5887 (2008).
(
10.1039/b814161d
) / J. Mater. Chem. by MG Kim (2008) -
Noh, M. & Cho, J. Role of Li6CoO4 cathode additive in Li-ion cells containing low coulombic efficiency anode material. J. Electrochem. Soc. 159, A1329–A1334 (2012).
(
10.1149/2.085208jes
) / J. Electrochem. Soc. by M Noh (2012) -
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).
(
10.1038/35035045
) / Nature by P Poizot (2000) -
Taberna, P. L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567–573 (2006).
(
10.1038/nmat1672
) / Nature Mater. by PL Taberna (2006) -
Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010).
(
10.1002/adma.201000717
) / Adv. Mater. by J Cabana (2010) -
Reddy, M. V., Subba Rao, G. V. & Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013).
(
10.1021/cr3001884
) / Chem. Rev. by MV Reddy (2013) -
Lou, X. W., Deng, D., Lee, J. Y., Feng, J. & Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20, 258–262 (2008).
(
10.1002/adma.200702412
) / Adv. Mater. by XW Lou (2008) -
Wang, H. L. et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132, 13978–13980 (2010).
(
10.1021/ja105296a
) / J. Am. Chem. Soc. by HL Wang (2010) -
Li, H., Balaya, P. & Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 151, A1878–A1885 (2004).
(
10.1149/1.1801451
) / J. Electrochem. Soc. by H Li (2004) -
Sun, J. P. et al. Overpotential and electrochemical impedance analysis on Cr2O3 thin film and powder electrode in rechargeable lithium batteries. Solid State Ion. 179, 2390–2395 (2008).
(
10.1016/j.ssi.2008.09.014
) / Solid State Ion. by JP Sun (2008) -
Wu, Z. Z. et al. Prelithiation activates Li(Ni0.5Mn0.3Co0.2)O2 for high capacity and excellent cycling stability. Nano Lett. 15, 5590–5596 (2015).
(
10.1021/acs.nanolett.5b02246
) / Nano Lett. by ZZ Wu (2015) -
Li, H., Richter, G. & Maier, J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. 15, 736–739 (2003).
(
10.1002/adma.200304574
) / Adv. Mater. by H Li (2003) -
Hu, Y.-S. et al. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nature Mater. 5, 713–717 (2006).
(
10.1038/nmat1709
) / Nature Mater. by Y-S Hu (2006) -
Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).
(
10.1126/science.1195628
) / Science by JY Huang (2010) -
McDowell, M. T. et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013).
(
10.1021/nl3044508
) / Nano Lett. by MT McDowell (2013) -
Zheng, G. Y., Yang, Y., Cha, J. J., Hong, S. S. & Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11, 4462–4467 (2011).
(
10.1021/nl2027684
) / Nano Lett. by GY Zheng (2011)
Dates
Type | When |
---|---|
Created | 9 years, 7 months ago (Jan. 11, 2016, 5:16 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 7:31 a.m.) |
Indexed | 22 hours, 13 minutes ago (Aug. 20, 2025, 8:49 a.m.) |
Issued | 9 years, 7 months ago (Jan. 11, 2016) |
Published | 9 years, 7 months ago (Jan. 11, 2016) |
Published Online | 9 years, 7 months ago (Jan. 11, 2016) |
@article{Sun_2016, title={High-capacity battery cathode prelithiation to offset initial lithium loss}, volume={1}, ISSN={2058-7546}, url={http://dx.doi.org/10.1038/nenergy.2015.8}, DOI={10.1038/nenergy.2015.8}, number={1}, journal={Nature Energy}, publisher={Springer Science and Business Media LLC}, author={Sun, Yongming and Lee, Hyun-Wook and Seh, Zhi Wei and Liu, Nian and Sun, Jie and Li, Yuzhang and Cui, Yi}, year={2016}, month=jan }