Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractThe competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.

Bibliography

Zhou, H., Wang, L., Hou, Y., Huang, Z., Lu, Q., & Wu, W. (2015). Evolution and control of the phase competition morphology in a manganite film. Nature Communications, 6(1).

Authors 6
  1. Haibiao Zhou (first)
  2. Lingfei Wang (additional)
  3. Yubin Hou (additional)
  4. Zhen Huang (additional)
  5. Qingyou Lu (additional)
  6. Wenbin Wu (additional)
References 34 Referenced 51
  1. Dagotto, E., Hotta, T. & Moreo, A. Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1–153 (2001). (10.1016/S0370-1573(00)00121-6) / Phys. Rep. by E Dagotto (2001)
  2. Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005). (10.1126/science.1107559) / Science by E Dagotto (2005)
  3. Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007). (10.1038/nature06119) / Nature by M Rini (2007)
  4. Li, T. et al. Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations. Nature 496, 69–73 (2013). (10.1038/nature11934) / Nature by T Li (2013)
  5. Zhang, L., Israel, C., Biswas, A., Greene, R. L. & de Lozanne, A. Direct observation of percolation in a manganite thin film. Science 298, 805–807 (2002). (10.1126/science.1077346) / Science by L Zhang (2002)
  6. Sarma, D. D. et al. Direct observation of large electronic domains with memory effect in doped manganites. Phys. Rev. Lett. 93, 097202 (2004). (10.1103/PhysRevLett.93.097202) / Phys. Rev. Lett. by DD Sarma (2004)
  7. Wu, W. et al. Magnetic imaging of a supercooling glass transition in a weakly disordered ferromagnet. Nat. Mater. 5, 881–886 (2006). (10.1038/nmat1743) / Nat. Mater. by W Wu (2006)
  8. Israel, C. et al. Translating reproducible phase-separated texture in manganites into reproducible two-state low-field magnetoresistance: An imaging and transport study. Phys. Rev. B 78, 054409 (2008). (10.1103/PhysRevB.78.054409) / Phys. Rev. B by C Israel (2008)
  9. Murakami, Y. et al. Ferromagnetic domain nucleation and growth in colossal magnetoresistive manganite. Nat. Nanotechnol. 5, 37–41 (2010). (10.1038/nnano.2009.342) / Nat. Nanotechnol. by Y Murakami (2010)
  10. Lai, K. et al. Mesoscopic percolating resistance network in a strained manganite thin film. Science 329, 190–193 (2010). (10.1126/science.1189925) / Science by K Lai (2010)
  11. Burkhardt, M. H. et al. Imaging the first-order magnetic transition in La0.35Pr0.275Ca0.375MnO3 . Phys. Rev. Lett. 108, 237202 (2012). (10.1103/PhysRevLett.108.237202) / Phys. Rev. Lett. by MH Burkhardt (2012)
  12. Rawat, R., Kushwaha, P., Mishra, D. K. & Sathe, V. G. Direct visualization of first-order magnetic transition in La5/8−yPryCa3/8MnO3 (y=0.45) thin films. Phys. Rev. B 87, 064412 (2013). (10.1103/PhysRevB.87.064412) / Phys. Rev. B by R Rawat (2013)
  13. Du, K. et al. Visualization of a ferromagnetic metallic edge state in manganite strips. Nat. Commun. 6, 6179 (2015). (10.1038/ncomms7179) / Nat. Commun. by K Du (2015)
  14. Kuwahara, H., Tomioka, Y., Asamitsu, A., Moritomo, Y. & Tokura, Y. A first-order phase transition induced by a magnetic field. Science 270, 961–963 (1995). (10.1126/science.270.5238.961) / Science by H Kuwahara (1995)
  15. Tomioka, Y., Asamitsu, A., Moritomo, Y., Kuwahara, H. & Tokura, Y. Collapse of a charge-ordered state under a magnetic field in Pr1/2Sr1/2MnO3 . Phys. Rev. Lett. 74, 5108–5111 (1995). (10.1103/PhysRevLett.74.5108) / Phys. Rev. Lett. by Y Tomioka (1995)
  16. Uehara, M., Mori, S., Chen, C. H. & Cheong, S. W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560–563 (1999). (10.1038/21142) / Nature by M Uehara (1999)
  17. Zhou, H., Wang, Z., Hou, Y. & Lu, Q. A compact high field magnetic force microscope. Ultramicroscopy 147, 133–136 (2014). (10.1016/j.ultramic.2014.07.011) / Ultramicroscopy by H Zhou (2014)
  18. Biswas, A. et al. Strain-driven charge-ordered state in La0.67Ca0.33MnO3 . Phys. Rev. B 63, 184424 (2001). (10.1103/PhysRevB.63.184424) / Phys. Rev. B by A Biswas (2001)
  19. Huang, Z. et al. Phase evolution and the multiple metal-insulator transitions in epitaxially shear-strained La0.67Ca0.33MnO3/NdGaO3(001) films. J. Appl. Phys. 108, 083912 (2010). (10.1063/1.3499650) / J. Appl. Phys. by Z Huang (2010)
  20. Huang, Z. et al. Dynamic phase separation as revealed by the strong resistance relaxation in epitaxially shear-strained La0.67Ca0.33MnO3/NdGaO3(001) thin-films. J. Magn. Magn. Mater. 322, 3544–3550 (2010). (10.1016/j.jmmm.2010.07.003) / J. Magn. Magn. Mater. by Z Huang (2010)
  21. Wang, L. F. et al. Annealing assisted substrate coherency and high-temperature antiferromagnetic insulating transition in epitaxial La0.67Ca0.33MnO3/NdGaO3(001) films. AIP Adv. 3, 052106 (2013). (10.1063/1.4804541) / AIP Adv. by LF Wang (2013)
  22. García-Muñoz, J. L., Collado, A., Aranda, M. A. G. & Ritter, C. Multilevel hierarchy of phase separation processes in La5/8-yPryCa3/8MnO3 . Phys. Rev. B 84, 024425 (2011). (10.1103/PhysRevB.84.024425) / Phys. Rev. B by JL García-Muñoz (2011)
  23. Khomskii, D. & Khomskii, L. Fine mist versus large droplets in phase separated manganites. Phys. Rev. B 67, 052406 (2003). (10.1103/PhysRevB.67.052406) / Phys. Rev. B by D Khomskii (2003)
  24. Mathur, N. & Littlewood, P. Mesoscopic texture in manganites. Phys. Today 56, 25–30 (2003). (10.1063/1.1554133) / Phys. Today by N Mathur (2003)
  25. Podzorov, V., Kim, B. G., Kiryukhin, V., Gershenson, M. E. & Cheong, S. W. Martensitic accommodation strain and the metal-insulator transition in manganites. Phys. Rev. B 64, 140406 (2001). (10.1103/PhysRevB.64.140406) / Phys. Rev. B by V Podzorov (2001)
  26. Mathur, N. D. & Littlewood, P. B. The self-organised phases of manganites. Solid State Commun. 119, 271–280 (2001). (10.1016/S0038-1098(01)00112-0) / Solid State Commun. by ND Mathur (2001)
  27. Ward, T. Z. et al. Elastically driven anisotropic percolation in electronic phase-separated manganites. Nat. Phys. 5, 885–888 (2009). (10.1038/nphys1419) / Nat. Phys. by TZ Ward (2009)
  28. Sharma, P. A. et al. Phase-segregated glass formation linked to freezing of structural interface motion. Phys. Rev. B 78, 134205 (2008). (10.1103/PhysRevB.78.134205) / Phys. Rev. B by PA Sharma (2008)
  29. Sharma, P. A., Kim, S. B., Koo, T. Y., Guha, S. & Cheong, S. W. Reentrant charge ordering transition in the manganites as experimental evidence for a strain glass. Phys. Rev. B 71, 224416 (2005). (10.1103/PhysRevB.71.224416) / Phys. Rev. B by PA Sharma (2005)
  30. Huang, Z. et al. Tuning the ground state of La0.67Ca0.33MnO3 films via coherent growth on orthorhombic NdGaO3 substrates with different orientations. Phys. Rev. B 86, 014410 (2012). (10.1103/PhysRevB.86.014410) / Phys. Rev. B by Z Huang (2012)
  31. Rondinelli, J. M., May, S. J. & Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bulletin 37, 261–270 (2012). (10.1557/mrs.2012.49) / MRS Bulletin by JM Rondinelli (2012)
  32. Liu, M. K. et al. Anisotropic electronic state via spontaneous phase separation in strained vanadium dioxide films. Phys. Rev. Lett. 111, 096602 (2013). (10.1103/PhysRevLett.111.096602) / Phys. Rev. Lett. by MK Liu (2013)
  33. Wang, L. F. et al. Pseudomorphic strain induced strong anisotropic magnetoresistance over a wide temperature range in epitaxial La0.67Ca0.33MnO3/NdGaO3(001) films. Appl. Phys. Lett. 97, 242507 (2010). (10.1063/1.3524193) / Appl. Phys. Lett. by LF Wang (2010)
  34. Hartmann, U. Magnetic Force Microscopy. Annu. Rev. Mater. Sci. 29, 53–87 (1999). (10.1146/annurev.matsci.29.1.53) / Annu. Rev. Mater. Sci. by U Hartmann (1999)
Dates
Type When
Created 9 years, 9 months ago (Nov. 25, 2015, 6:42 a.m.)
Deposited 2 years, 8 months ago (Jan. 5, 2023, 5:28 a.m.)
Indexed 1 month ago (Aug. 1, 2025, 11:59 p.m.)
Issued 9 years, 9 months ago (Nov. 25, 2015)
Published 9 years, 9 months ago (Nov. 25, 2015)
Published Online 9 years, 9 months ago (Nov. 25, 2015)
Funders 0

None

@article{Zhou_2015, title={Evolution and control of the phase competition morphology in a manganite film}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms9980}, DOI={10.1038/ncomms9980}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Zhou, Haibiao and Wang, Lingfei and Hou, Yubin and Huang, Zhen and Lu, Qingyou and Wu, Wenbin}, year={2015}, month=nov }