Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractA grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications.

Bibliography

Zhang, Y., Stocks, G. M., Jin, K., Lu, C., Bei, H., Sales, B. C., Wang, L., Béland, L. K., Stoller, R. E., Samolyuk, G. D., Caro, M., Caro, A., & Weber, W. J. (2015). Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nature Communications, 6(1).

Authors 13
  1. Yanwen Zhang (first)
  2. G. Malcolm Stocks (additional)
  3. Ke Jin (additional)
  4. Chenyang Lu (additional)
  5. Hongbin Bei (additional)
  6. Brian C. Sales (additional)
  7. Lumin Wang (additional)
  8. Laurent K. Béland (additional)
  9. Roger E. Stoller (additional)
  10. German D. Samolyuk (additional)
  11. Magdalena Caro (additional)
  12. Alfredo Caro (additional)
  13. William J. Weber (additional)
References 46 Referenced 585
  1. Wang, L. M., Dodd, R. A. & Kulcinski, G. L. Gas effects on void formation in 14 MeV nickel ion irradiated pure nickel. J. Nucl. Mater. 141-143, 713–717 (1986). (10.1016/0022-3115(86)90078-4) / J. Nucl. Mater. by LM Wang (1986)
  2. Wang, L. M., Dodd, R. A. & Kulcinski, G. L. Radiation damage and copper distribution in 14 MeV copper-ion-implanted nickel—TEM and AEM analyses in cross-section. Ultramicroscopy 29, 284–290 (1989). (10.1016/0304-3991(89)90256-8) / Ultramicroscopy by LM Wang (1989)
  3. Mitchell, M. A. & Garner, F. A. Neutron-induced swelling of binary Ni-Al alloys. J. Nucl. Mater. 187, 103–108 (1992). (10.1016/0022-3115(92)90540-2) / J. Nucl. Mater. by MA Mitchell (1992)
  4. Skylaris, C. K., Haynes, P. D., Mostofi, A. A. & Payne, M. C. Introducing ONETEP: linear-scaling density functional simulations on parallel computers. J. Chem. Phys. 122, 84119 (2005). (10.1063/1.1839852) / J. Chem. Phys. by CK Skylaris (2005)
  5. Votinov, S. N. & Kolotushkin, V. P. Metastability of structure and radiation resistance of nickel-chromium alloys. Met. Sci. Heat Treat. 48, 36–40 (2006). (10.1007/s11041-006-0040-z) / Met. Sci. Heat Treat. by SN Votinov (2006)
  6. Kolotushkin, V. P. & Votinov, S. N. Structural factor and effects of low-temperature radiation damage in structural materials. Met. Sci. Heat Treat. 48, 452–458 (2006). (10.1007/s11041-006-0116-9) / Met. Sci. Heat Treat. by VP Kolotushkin (2006)
  7. Wakai, E. et al. Effect of solute atoms on swelling in Ni alloys and pure Ni under He+ ion irradiation. J. Nucl. Mater. 307-311, 367–373 (2002). (10.1016/S0022-3115(02)01192-3) / J. Nucl. Mater. by E Wakai (2002)
  8. Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014). (10.1126/science.1254581) / Science by B Gludovatz (2014)
  9. Santodonato, L. J. et al. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015). (10.1038/ncomms6964) / Nat. Commun. by LJ Santodonato (2015)
  10. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375-377, 213–218 (2004). (10.1016/j.msea.2003.10.257) / Mater. Sci. Eng. A by B Cantor (2004)
  11. Yeh, J.-W., Chang, S.-Y., Hong, Y.-D., Chen, S.-K. & Lin, S.-J. Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Mater. Chem. Phys. 103, 41–46 (2007). (10.1016/j.matchemphys.2007.01.003) / Mater. Chem. Phys. by J-W Yeh (2007)
  12. Zhang, Y., Zuo, T., Cheng, Y. & Liaw, P. K. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013). (10.1038/srep01455) / Sci. Rep. by Y Zhang (2013)
  13. Wang, Y. P., Li, B. S. & Fu, H. Z. Solid solution or intermetallics in a high-entropy alloy. Adv. Eng. Mater. 11, 641–644 (2009). (10.1002/adem.200900057) / Adv. Eng. Mater. by YP Wang (2009)
  14. Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P. & Liaw, P. K. Refractory high-entropy alloys. Intermetallics 18, 1758–1765 (2010). (10.1016/j.intermet.2010.05.014) / Intermetallics by ON Senkov (2010)
  15. Senkov, O. N., Wilks, G. B., Scott, J. M. & Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011). (10.1016/j.intermet.2011.01.004) / Intermetallics by ON Senkov (2011)
  16. Ye, X. et al. Synthesis and characterization of high-entropy alloy AlxFeCoNiCuCr by laser cladding. Adv. Mater. Sci. Eng. 2011, 1–7 (2011). (10.1155/2011/485942) / Adv. Mater. Sci. Eng. by X Ye (2011)
  17. Otto, F., Yang, Y., Bei, H. & George, E. P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628–2638 (2013). (10.1016/j.actamat.2013.01.042) / Acta Mater. by F Otto (2013)
  18. Senkov, O. N., Miller, J. D., Miracle, D. B. & Woodward, C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015). (10.1038/ncomms7529) / Nat. Commun. by ON Senkov (2015)
  19. Troparevsky, M. C. et al. Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015). / Phys. Rev. X by MC Troparevsky (2015)
  20. Nordlund, K., Keinonen, J., Ghaly, M. & Averback, R. S. Coherent displacement of atoms during ion irradiation. Nature 398, 49–51 (1999). (10.1038/17983) / Nature by K Nordlund (1999)
  21. Zhang, Y. et al. Ionization-induced annealing of pre-existing defects in silicon carbide. Nat. Commun. 6, 8049 (2015). (10.1038/ncomms9049) / Nat. Commun. by Y Zhang (2015)
  22. Trautmann, C. Micro- and Nanoengineering with Ion Tracks, in Ion Beams in Nanoscience and Technology Springer (2009). (10.1007/978-3-642-00623-4_30)
  23. Was, G. S. & Averback, R. S. in Comprehensive Nuclear Materials Vol. 1, ed. Konings R. J. M. 293–332Elsevier Ltd. (2012). / Comprehensive Nuclear Materials by GS Was (2012)
  24. Weber, W. J., Duffy, D. M., Thomé, L. & Zhang, Y. The role of electronic energy loss in ion beam modification of materials. Curr. Opin. Solid State Mater. Sci 19, 1–11 (2015). (10.1016/j.cossms.2014.09.003) / Curr. Opin. Solid State Mater. Sci by WJ Weber (2015)
  25. Faulkner, J. S. & Stocks, G. M. Calculating properties with the coherent-potential approximation. Phys. Rev. B 21, 3222–3244 (1980). (10.1103/PhysRevB.21.3222) / Phys. Rev. B by JS Faulkner (1980)
  26. Butler, W. H. Theory of electronic transport in random alloys: Korringa-Kohn-Rostoker coherent-potential approximation. Phys. Rev. B 31, 3260–3277 (1985). (10.1103/PhysRevB.31.3260) / Phys. Rev. B by WH Butler (1985)
  27. Swihart, J. C., Butler, W. H., Stocks, G. M., Nichoison, D. M. & Ward, R. C. First-principles calculation of the residual electrical resistivity of random alloys. Phys. Rev. Lett. 57, 1181–1184 (1986). (10.1103/PhysRevLett.57.1181) / Phys. Rev. Lett. by JC Swihart (1986)
  28. Ködderitzsch, D., Lowitzer, S., Staunton, J. B. & Ebert, H. Electronic and transport properties of disordered transition-metal alloys. Phys. Status Solidi B 248, 2248–2265 (2011). (10.1002/pssb.201147097) / Phys. Status Solidi B by D Ködderitzsch (2011)
  29. Ho, C. Y., Ackerman, M. W., Wu, K. Y., Oh, S. G. & Havill, T. N. Thermal conductivity of ten selected binary alloy systems. J. Phys. Chem. Ref. Data 7, 959–1177 (1978). (10.1063/1.555583) / J. Phys. Chem. Ref. Data by CY Ho (1978)
  30. Kittel, C. Introduction to Solid State Physics. 8th edn John Wiley & Sons (2004).
  31. Hoover, W. G. Computational Statistical Mechanics Elsevier (1981).
  32. Bonny, G., Castin, N. & Terentyev, D. Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Model. Simul. Mater. Sci. 21, 1–15 (2013). (10.1088/0965-0393/21/8/085004) / Model. Simul. Mater. Sci. by G Bonny (2013)
  33. Caro, M., Béland, L. K., Samolyuk, G. D., Stoller, R. E. & Caro, A. Lattice thermal conductivity of multi-component alloys. J. Alloys Compd. 648, 408–413 (2015). (10.1016/j.jallcom.2015.06.035) / J. Alloys Compd. by M Caro (2015)
  34. Ziegler, J. F., Biersack, J. P. & Ziegler, M. D. SRIM–The Stopping and Range of Ions in Solids SRIM Co. (2008).
  35. Aidhy, D. S. et al. Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments. Acta Mater. 99, 69–76 (2015). (10.1016/j.actamat.2015.08.007) / Acta Mater. by DS Aidhy (2015)
  36. Jenkins, L. & Kirk, M. A. Characterization of Radiation Damage by Transmission Electron Microscopy IOP Publishing Ltd. (2001). (10.1887/075030748X)
  37. Feldman, L. C., Mayer, J. W. & Picraux, S. T. Materials Analysis by Ion Channeling, Submicron Crystallography Academic (1982). (10.1016/B978-0-12-252680-0.50009-7)
  38. Johnson, D. D., Nicholson, D. M., Pinski, F. J., Gyorffy, B. L. & Stocks, G. M. Density-functional theory for random alloys: total energy within the coherent-potential approximation. Phys. Rev. Lett. 56, 2088–2091 (1986). (10.1103/PhysRevLett.56.2088) / Phys. Rev. Lett. by DD Johnson (1986)
  39. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). (10.1006/jcph.1995.1039) / J. Comput. Phys. by S Plimpton (1995)
  40. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. 18, 015012 (2010). (10.1088/0965-0393/18/1/015012) / Model. Simul. Mater. Sci. by A Stukowski (2010)
  41. Wu, Z., Bei, H., Otto, F., Pharr, G. M. & George, E. P. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131–140 (2014). (10.1016/j.intermet.2013.10.024) / Intermetallics by Z Wu (2014)
  42. Bei, H. & George, E. P. Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy. Acta Mater. 53, 69–77 (2005). (10.1016/j.actamat.2004.09.003) / Acta Mater. by H Bei (2005)
  43. Bei, H., George, E. P. & Pharr, G. M. Elastic constants of single crystal Cr3Si and Cr-Cr3Si lamellar eutectic composites: a comparison of ultrasonic and nanoindentation measurements. Scripta Mater. 51, 875–879 (2004). (10.1016/j.scriptamat.2004.07.001) / Scripta Mater. by H Bei (2004)
  44. Xia, Y. Z., Bei, H., Gao, Y. F., Catoor, D. & George, E. P. Synthesis, characterization, and nanoindentation response of single crystal Fe–Cr–Ni alloys with FCC and BCC structures. Mater. Sci. Eng. A 611, 177–187 (2014). (10.1016/j.msea.2014.05.079) / Mater. Sci. Eng. A by YZ Xia (2014)
  45. Wiedersich, H. Effects of the primary recoils spectrum on microstructural evolution. J. Nucl. Mater. 70, 179–181 (1991). / J. Nucl. Mater. by H Wiedersich (1991)
  46. Stoller, R. E. et al. On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. B 310, 75–80 (2013). (10.1016/j.nimb.2013.05.008) / Nucl. Instrum. Methods Phys. Res. B by RE Stoller (2013)
Dates
Type When
Created 9 years, 10 months ago (Oct. 28, 2015, 6:42 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 5:36 a.m.)
Indexed 22 hours, 2 minutes ago (Aug. 31, 2025, 6:15 a.m.)
Issued 9 years, 10 months ago (Oct. 28, 2015)
Published 9 years, 10 months ago (Oct. 28, 2015)
Published Online 9 years, 10 months ago (Oct. 28, 2015)
Funders 0

None

@article{Zhang_2015, title={Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms9736}, DOI={10.1038/ncomms9736}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Zhang, Yanwen and Stocks, G. Malcolm and Jin, Ke and Lu, Chenyang and Bei, Hongbin and Sales, Brian C. and Wang, Lumin and Béland, Laurent K. and Stoller, Roger E. and Samolyuk, German D. and Caro, Magdalena and Caro, Alfredo and Weber, William J.}, year={2015}, month=oct }