Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractThe demand for highly scalable, low-power devices for data storage and logic operations is strongly stimulating research into resistive switching as a novel concept for future non-volatile memory devices. To meet technological requirements, it is imperative to have a set of material design rules based on fundamental material physics, but deriving such rules is proving challenging. Here, we elucidate both switching mechanism and failure mechanism in the valence-change model material SrTiO3, and on this basis we derive a design rule for failure-resistant devices. Spectromicroscopy reveals that the resistance change during device operation and failure is indeed caused by nanoscale oxygen migration resulting in localized valence changes between Ti4+ and Ti3+. While fast reoxidation typically results in retention failure in SrTiO3, local phase separation within the switching filament stabilizes the retention. Mimicking this phase separation by intentionally introducing retention-stabilization layers with slow oxygen transport improves retention times considerably.

Bibliography

Baeumer, C., Schmitz, C., Ramadan, A. H. H., Du, H., Skaja, K., Feyer, V., Müller, P., Arndt, B., Jia, C.-L., Mayer, J., De Souza, R. A., Michael Schneider, C., Waser, R., & Dittmann, R. (2015). Spectromicroscopic insights for rational design of redox-based memristive devices. Nature Communications, 6(1).

Authors 14
  1. Christoph Baeumer (first)
  2. Christoph Schmitz (additional)
  3. Amr H. H. Ramadan (additional)
  4. Hongchu Du (additional)
  5. Katharina Skaja (additional)
  6. Vitaliy Feyer (additional)
  7. Philipp Müller (additional)
  8. Benedikt Arndt (additional)
  9. Chun-Lin Jia (additional)
  10. Joachim Mayer (additional)
  11. Roger A. De Souza (additional)
  12. Claus Michael Schneider (additional)
  13. Rainer Waser (additional)
  14. Regina Dittmann (additional)
References 68 Referenced 104
  1. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007). (10.1038/nmat2023) / Nat. Mater. by R Waser (2007)
  2. Sawa, A. Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008). (10.1016/S1369-7021(08)70119-6) / Mater. Today by A Sawa (2008)
  3. Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009). (10.1002/adma.200900375) / Adv. Mater. by R Waser (2009)
  4. Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008). (10.1038/nnano.2008.160) / Nat. Nanotechnol. by JJ Yang (2008)
  5. Wong, H. S. P. et al. Metal-oxide RRAM. Proc. IEEE 100, 1951–1970 (2012). (10.1109/JPROC.2012.2190369) / Proc. IEEE by HSP Wong (2012)
  6. Linn, E., Rosezin, R., Kügeler, C. & Waser, R. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010). (10.1038/nmat2748) / Nat. Mater. by E Linn (2010)
  7. Janousch, M. et al. Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19, 2232–2235 (2007). (10.1002/adma.200602915) / Adv. Mater. by M Janousch (2007)
  8. Lenser, C. et al. Probing the oxygen vacancy distribution in resistive switching Fe-SrTiO3 metal-insulator-metal-structures by micro-x ray absorption near-edge structure. J. Appl. Phys. 111, 076101 (2012). (10.1063/1.3699315) / J. Appl. Phys. by C Lenser (2012)
  9. Dittmann, R. et al. Scaling potential of local redox processes in memristive SrTiO3 thin-film devices. Proc. IEEE 100, 1979–1990 (2012). (10.1109/JPROC.2012.2188771) / Proc. IEEE by R Dittmann (2012)
  10. Koehl, A. et al. Evidence for multifilamentary valence changes in resistive switching SrTiO3 devices detected by transmission X-ray microscopy. APL Mater. 1, 042102 (2013). (10.1063/1.4822438) / APL Mater. by A Koehl (2013)
  11. Lenser, C. et al. Insights into nanoscale electrochemical reduction in a memristive oxide: the role of three-phase boundaries. Adv. Funct. Mater. 24, 4466–4472 (2014). (10.1002/adfm.201304233) / Adv. Funct. Mater. by C Lenser (2014)
  12. Moreno, C. et al. Reversible resistive switching and multilevel recording in La0.7Sr0.3MnO3 thin films for low cost nonvolatile memories. Nano Lett. 10, 3828–3835 (2010). (10.1021/nl1008162) / Nano Lett. by C Moreno (2010)
  13. Rana, V. & Waser, R. in Memristors Memristive Systems ed. Tetzlaff R. 223–251Springer (2014). (10.1007/978-1-4614-9068-5_7)
  14. Noman, M., Jiang, W., Salvador, P. A., Skowronski, M. & Bain, J. A. Computational investigations into the operating window for memristive devices based on homogeneous ionic motion. Appl. Phys. A Mater. Sci. Process 102, 877–883 (2011). (10.1007/s00339-011-6270-y) / Appl. Phys. A Mater. Sci. Process by M Noman (2011)
  15. Dong-Wook, K., Minji, G., Eunsongyi, L., Ahrum, S. & El, M. B. Doping-level dependences of switching speeds and the retention characteristics of resistive switching Pt/SrTiO3 junctions. J. Korean Phys. Soc. 57, 1432 (2010). (10.3938/jkps.57.1432) / J. Korean Phys. Soc. by K Dong-Wook (2010)
  16. Raab, N., Bäumer, C. & Dittmann, R. Impact of the cation-stoichiometry on the resistive switching and data retention of SrTiO3 thin films. AIP Adv. 5, 047150 (2015). (10.1063/1.4919697) / AIP Adv. by N Raab (2015)
  17. Yang, M. et al. Direct evidences of filamentary resistive switching in Pt/Nb-doped SrTiO3 junctions. J. Appl. Phys. 115, 134505 (2014). (10.1063/1.4870867) / J. Appl. Phys. by M Yang (2014)
  18. Choi, D., Lee, D., Sim, H., Chang, M. & Hwang, H. Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications. Appl. Phys. Lett. 88, 082904 (2006). (10.1063/1.2178405) / Appl. Phys. Lett. by D Choi (2006)
  19. Ninomiya, T. et al. Conductive filament scaling of TaOx bipolar ReRAM for improving data retention under low operation current. IEEE Trans. Electron Devices 60, 1384–1389 (2013). (10.1109/TED.2013.2248157) / IEEE Trans. Electron Devices by T Ninomiya (2013)
  20. Ninomiya, T. et al. Improvement of data retention during long-term use by suppressing conductive filament expansion in TaOx bipolar-ReRAM. IEEE Electron Device Lett. 34, 762–764 (2013). (10.1109/LED.2013.2258653) / IEEE Electron Device Lett. by T Ninomiya (2013)
  21. Gao, B. et al. in IEEE Internatinal Electron Devices Meeting (Oxide-Based RRAM Switching Mechanism: A New Ion-Transport-Recombination Model) 1–4 (San Francisco, CA, USA, 2008). (10.1109/IEDM.2008.4796751)
  22. Gao, B. et al. in Proceedings of the European Solid State Device Research Conference ESSDERC (Oxide-Based RRAM: Physical Based Retention Projection) 392–395 (Sevilla, Spain, 2010). (10.1109/ESSDERC.2010.5618200)
  23. Lee, H. Y. et al. in IEEE International Electron Devices Meeting (Low Power and High Speed Bipolar Switching with a Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM) 1–4 (San Francisco, CA, USA, 2008). (10.1109/IEDM.2008.4796677)
  24. Chen, Y. S. et al. in IEEE International Electron Devices Meeting (Highly Scalable Hafnium Oxide Memory with Improvements of Resistive Distribution and Read Disturb Immunity) 1–4 (Baltimore, MD, USA, 2009). (10.1109/IEDM.2009.5424411)
  25. Yu, S. M., Chen, Y. Y., Guan, X. M., Wong, H. S. P. & Kittl, J. A. A Monte Carlo study of the low resistance state retention of HfOx based resistive switching memory. Appl. Phys. Lett. 100, 43507 (2012). (10.1063/1.3679610) / Appl. Phys. Lett. by SM Yu (2012)
  26. Chen, Y. Y. et al. Endurance/retention trade-off on HfO2\metal cap 1T1R bipolar RRAM. IEEE Trans. Electron Devices 60, 1114–1121 (2013). (10.1109/TED.2013.2241064) / IEEE Trans. Electron Devices by YY Chen (2013)
  27. Wei, Z. et al. in IEEE International Electron Devices Meeting (Highly Reliable TaOx ReRAM and Direct Evidence of Redox Reaction Mechanism) 1–4 (San Francisco, CA, USA, 2008). (10.1109/IEDM.2008.4796676)
  28. Goux, L. et al. Evidences of electrode-controlled retention properties in Ta2O5-based resistive-switching memory cells. ECS Solid State Lett. 3, Q79–Q81 (2014). (10.1149/2.0011412ssl) / ECS Solid State Lett. by L Goux (2014)
  29. Ninomiya, T. et al. Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation. Symp. VLSI Technol. 48, 73–74 (2012). / Symp. VLSI Technol. by T Ninomiya (2012)
  30. Waser, R. Bulk Conductivity and defect chemistry of acceptor-doped strontium titanate in the quenched state. J. Am. Ceram. Soc. 74, 1934–1940 (1991). (10.1111/j.1151-2916.1991.tb07812.x) / J. Am. Ceram. Soc. by RBulk Waser (1991)
  31. De Souza, R. A., Metlenko, V., Park, D. & Weirich, T. E. Behavior of oxygen vacancies in single-crystal SrTiO3: equilibrium distribution and diffusion kinetics. Phys. Rev. B 85, 174109 (2012). (10.1103/PhysRevB.85.174109) / Phys. Rev. B by RA De Souza (2012)
  32. Schie, M., Waser, R. & De Souza, R. a. A simulation study of oxygen-vacancy behavior in strontium titanate: beyond nearest-neighbor interactions. J. Phys. Chem. C 118, 15185–15192 (2014). (10.1021/jp504436t) / J. Phys. Chem. C by M Schie (2014)
  33. Moos, R. & Hardtl, K. H. Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400 °C. J. Am. Ceram. Soc. 80, 2549–2562 (1997). (10.1111/j.1151-2916.1997.tb03157.x) / J. Am. Ceram. Soc. by R Moos (1997)
  34. Denk, I., Münch, W. & Maier, J. Partial conductivities in SrTiO3: bulk polarization experiments, oxygen concentration cell measurements, and defect-chemical modeling. J. Am. Ceram. Soc. 78, 3265–3272 (1995). (10.1111/j.1151-2916.1995.tb07963.x) / J. Am. Ceram. Soc. by I Denk (1995)
  35. Gömann, K. et al. Sr diffusion in undoped and La-doped SrTiO3 single crystals under oxidizing conditions. Phys. Chem. Chem. Phys. 7, 2053–2060 (2005). (10.1039/B418824A) / Phys. Chem. Chem. Phys. by K Gömann (2005)
  36. Metlenko, V. et al. Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO3? Nanoscale 6, 12864–12876 (2014). (10.1039/C4NR04083J) / Nanoscale by V Metlenko (2014)
  37. Muenstermann, R., Menke, T., Dittmann, R. & Waser, R. Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Adv. Mater. 22, 4819–4822 (2010). (10.1002/adma.201001872) / Adv. Mater. by R Muenstermann (2010)
  38. Koehl, A. et al. Evidence for multifilamentary valence changes in resistive switching SrTiO3 devices detected by transmission X-ray microscopy. APL Mater. 1, 042102 (2013). (10.1063/1.4822438) / APL Mater. by A Koehl (2013)
  39. Abbate, M. et al. Soft-x-ray-absorption studies of the location of extra charges induced by substitution in controlled-valence materials. Phys. Rev. B 44, 5419–5422 (1991). (10.1103/PhysRevB.44.5419) / Phys. Rev. B by M Abbate (1991)
  40. Strachan, J. P. et al. Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22, 3573–3577 (2010). (10.1002/adma.201000186) / Adv. Mater. by JP Strachan (2010)
  41. Miao, F. et al. Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633–5640 (2011). (10.1002/adma.201103379) / Adv. Mater. by F Miao (2011)
  42. McLeod, J. A. et al. Band gaps and electronic structure of alkaline-earth and post-transition-metal oxides. Phys. Rev. B 81, 245123 (2010). (10.1103/PhysRevB.81.245123) / Phys. Rev. B by JA McLeod (2010)
  43. Meyer, R., Szot, K. & Waser, R. Restructuring the surface region of donor doped SrTiO 3 single crystals under oxidizing conditions. Ferroelectrics 224, 323–329 (1999). (10.1080/00150199908210583) / Ferroelectrics by R Meyer (1999)
  44. Meyer, R., Waser, R., Helmbold, J. & Borchardt, G. Cationic surface segregation in donor-doped SrTiO3 under oxidizing conditions. J. Electroceramics 9, 101–110 (2002). (10.1023/A:1022898104375) / J. Electroceramics by R Meyer (2002)
  45. Rahmati, B. et al. Oxidation of reduced polycrystalline Nb-doped SrTiO3: characterization of surface islands. Surf. Sci. 595, 115–126 (2005). (10.1016/j.susc.2005.07.041) / Surf. Sci. by B Rahmati (2005)
  46. Lenser, C. et al. Formation and movement of cationic defects during forming and resistive switching in SrTiO3 thin film devices. Adv. Funct. Mater. doi:10.1002/adfm.201500851 (2015). (10.1002/adfm.201500851)
  47. Szot, K. et al. Formation of micro-crystals on the (100) surface of SrTiO3 at elevated temperatures. Surf. Sci. 460, 112–128 (2000). (10.1016/S0039-6028(00)00522-7) / Surf. Sci. by K Szot (2000)
  48. Tanuma, S., Powell, C. J. & Penn, D. R. Proposed formula for electron inelastic mean free paths based on calculations for 31 materials. Surf. Sci. 192, L849–L857 (1987). (10.1016/S0039-6028(87)81156-1) / Surf. Sci. by S Tanuma (1987)
  49. Baeumer, C. Surface termination conversion during SrTiO3 thin film growth revealed by X-ray photoelectron spectroscopy. Sci. Rep. 5, 11829 (2015). (10.1038/srep11829) / Sci. Rep. by C Baeumer (2015)
  50. Meyer, R. et al. in 9th Annual Non-Volatile Memory Technology Symposium (Oxide Dual-Layer Memory Element for Scalable Non-Volatile Cross-Point Memory Technology) 1–5 (Pacific Grove, CA, USA, 2008). (10.1109/NVMT.2008.4731194)
  51. Merkle, R. & Maier, J. Oxygen incorporation into Fe-doped SrTiO3: mechanistic interpretation of the surface reaction. Phys. Chem. Chem. Phys. 4, 4140–4148 (2002). (10.1039/b204032h) / Phys. Chem. Chem. Phys. by R Merkle (2002)
  52. De Souza, R. A. A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides. Phys. Chem. Chem. Phys. 8, 890 (2006). (10.1039/b511702j) / Phys. Chem. Chem. Phys. by RA De Souza (2006)
  53. De Souza, R. A. et al. Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries. Phys. Chem. Chem. Phys. 10, 2067–2072 (2008). (10.1039/b719363g) / Phys. Chem. Chem. Phys. by RA De Souza (2008)
  54. Heuer, A. H. Oxygen and aluminum diffusion in α-Al2O3: How much do we really understand? J. Eur. Ceram. Soc. 28, 1495–1507 (2008). (10.1016/j.jeurceramsoc.2007.12.020) / J. Eur. Ceram. Soc. by AH Heuer (2008)
  55. Zhang, H., Aslam, N., Reiners, M., Waser, R. & Hoffmann-Eifert, S. Atomic layer deposition of TiOx/Al2O3 bilayer structures for resistive switching memory applications. Chem. Vap. Deposition 20, 1–9 (2014). (10.1002/cvde.201407123) / Chem. Vap. Deposition by H Zhang (2014)
  56. Chen, Y. Z. et al. Room temperature formation of high-mobility two-dimensional electron gases at crystalline complex oxide interfaces. Adv. Mater. 26, 1462–1467 (2014). (10.1002/adma.201304634) / Adv. Mater. by YZ Chen (2014)
  57. Chen, Y. Z. et al. A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3. Nat. Commun. 4, 1371 (2013). (10.1038/ncomms2394) / Nat. Commun. by YZ Chen (2013)
  58. Menzel, S. et al. Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv. Funct. Mater. 21, 4487–4492 (2011). (10.1002/adfm.201101117) / Adv. Funct. Mater. by S Menzel (2011)
  59. Yu, S., Wu, Y., Chai, Y., Provine, J. & Wong, H. S. P. in Int. Symp. VLSI Technol. Syst. Appl. Proc. 106–107Hsinchu, Taiwan (2011).
  60. Kim, Y.-B. et al. in Symposium on VLSI Technology (Bi-layered RRAM with Unlimited Endurance and Extremely Uniform Switching) 52–53Honolulu, HI, USA (2011).
  61. Wang, J. C., Jian, D. Y., Ye, Y. R. & Chang, L. C. Platinum-aluminum alloy electrode for retention improvement of gadolinium oxide resistive switching memory. Appl. Phys. A 113, 37–40 (2013). (10.1007/s00339-013-7874-1) / Appl. Phys. A by JC Wang (2013)
  62. Wiemann, C. et al. A new nanospectroscopy tool with synchrotron radiation: NanoESCA@Elettra. e-J. Surf. Sci. Nanotechnol. 9, 395–399 (2011). (10.1380/ejssnt.2011.395) / e-J. Surf. Sci. Nanotechnol. by C Wiemann (2011)
  63. Kim, H. et al. Doping efficiency of single and randomly stacked bilayer graphene by iodine adsorption. Appl. Phys. Lett. 105, 011605 (2014). (10.1063/1.4889747) / Appl. Phys. Lett. by H Kim (2014)
  64. Zagonel, L. F. et al. Orientation-dependent work function of in situ annealed strontium titanate. J. Phys. Condens. Matter 21, 314013 (2009). (10.1088/0953-8984/21/31/314013) / J. Phys. Condens. Matter by LF Zagonel (2009)
  65. Du, H. A nonlinear filtering algorithm for denoising HR(S)TEM micrographs. Ultramicroscopy 151, 62–67 (2015). (10.1016/j.ultramic.2014.11.012) / Ultramicroscopy by H Du (2015)
  66. Pedone, A., Malavasi, G., Menziani, M. C., Cormack, A. N. & Segre, U. A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J. Phys. Chem. B 110, 11780–11795 (2006). (10.1021/jp0611018) / J. Phys. Chem. B by A Pedone (2006)
  67. Mott, N. F. & Littleton, M. J. Conduction in polar crystals. I. Electrolytic conduction in solid salts. Trans. Faraday Soc. 34, 485–499 (1938). (10.1039/tf9383400485) / Trans. Faraday Soc. by NF Mott (1938)
  68. Gale, J. D. GULP: a computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 93, 629–637 (1997). (10.1039/a606455h) / J. Chem. Soc. Faraday Trans. by JD Gale (1997)
Dates
Type When
Created 9 years, 10 months ago (Oct. 19, 2015, 6:57 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 5:36 a.m.)
Indexed 3 days, 22 hours ago (Aug. 20, 2025, 8:20 a.m.)
Issued 9 years, 10 months ago (Oct. 19, 2015)
Published 9 years, 10 months ago (Oct. 19, 2015)
Published Online 9 years, 10 months ago (Oct. 19, 2015)
Funders 0

None

@article{Baeumer_2015, title={Spectromicroscopic insights for rational design of redox-based memristive devices}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms9610}, DOI={10.1038/ncomms9610}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Baeumer, Christoph and Schmitz, Christoph and Ramadan, Amr H. H. and Du, Hongchu and Skaja, Katharina and Feyer, Vitaliy and Müller, Philipp and Arndt, Benedikt and Jia, Chun-Lin and Mayer, Joachim and De Souza, Roger A. and Michael Schneider, Claus and Waser, Rainer and Dittmann, Regina}, year={2015}, month=oct }