Abstract
AbstractBlack phosphorus has been revisited recently as a new two-dimensional material showing potential applications in electronics and optoelectronics. Here we report the anisotropic in-plane thermal conductivity of suspended few-layer black phosphorus measured by micro-Raman spectroscopy. The armchair and zigzag thermal conductivities are ∼20 and ∼40 W m−1 K−1 for black phosphorus films thicker than 15 nm, respectively, and decrease to ∼10 and ∼20 W m−1 K−1 as the film thickness is reduced, exhibiting significant anisotropy. The thermal conductivity anisotropic ratio is found to be ∼2 for thick black phosphorus films and drops to ∼1.5 for the thinnest 9.5-nm-thick film. Theoretical modelling reveals that the observed anisotropy is primarily related to the anisotropic phonon dispersion, whereas the intrinsic phonon scattering rates are found to be similar along the armchair and zigzag directions. Surface scattering in the black phosphorus films is shown to strongly suppress the contribution of long mean-free-path acoustic phonons.
References
47
Referenced
577
-
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
(
10.1126/science.1102896
) / Science by KS Novoselov (2004) -
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
(
10.1038/nmat1849
) / Nat. Mater. by AK Geim (2007) -
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
(
10.1038/nnano.2012.193
) / Nat. Nanotechnol. by QH Wang (2012) -
Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).
(
10.1021/cr300263a
) / Chem. Rev. by M Xu (2013) -
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
(
10.1103/PhysRevLett.105.136805
) / Phys. Rev. Lett. by KF Mak (2010) -
Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010).
(
10.1021/nl1022139
) / Nano Lett. by L Song (2010) -
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).
(
10.1038/nnano.2010.172
) / Nat. Nanotechnol. by CR Dean (2010) -
Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).
(
10.1038/nnano.2014.35
) / Nat. Nanotechnol. by L Li (2014) -
Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).
(
10.1021/nn501226z
) / ACS Nano by H Liu (2014) -
Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).
(
10.1038/ncomms5458
) / Nat. Commun. by F Xia (2014) -
Koenig, S. P., Doganov, R. a., Schmidt, H., Castro Neto, A. H. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).
(
10.1063/1.4868132
) / Appl. Phys. Lett. by SP Koenig (2014) -
Du, Y., Liu, H., Deng, Y. & Ye, P. D. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar and scaling. ACS Nano 8, 10035–10042 (2014).
(
10.1021/nn502553m
) / ACS Nano by Y Du (2014) -
Liu, H., Du, Y., Deng, Y. & Ye, P. D. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44, 2732–2743 (2015).
(
10.1039/C4CS00257A
) / Chem. Soc. Rev. by H Liu (2015) -
Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).
(
10.1088/2053-1583/1/2/025001
) / 2D Mater. by A Castellanos-Gomez (2014) -
Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).
(
10.1103/PhysRevB.89.235319
) / Phys. Rev. B by V Tran (2014) -
Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).
(
10.1038/nnano.2015.71
) / Nat. Nanotechnol. by X Wang (2015) -
Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).
(
10.1021/nl5008085
) / Nano Lett. by M Buscema (2014) -
Deng, Y. et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 8, 8292–8299 (2014).
(
10.1021/nn5027388
) / ACS Nano by Y Deng (2014) -
Engel, M., Steiner, M. & Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14, 6414–6417 (2014).
(
10.1021/nl502928y
) / Nano Lett. by M Engel (2014) -
Dai, J. & Zeng, X. C. Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5, 1289–1293 (2014).
(
10.1021/jz500409m
) / J. Phys. Chem. Lett. by J Dai (2014) -
Fei, R. et al. Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 14, 6393–6399 (2014).
(
10.1021/nl502865s
) / Nano Lett. by R Fei (2014) -
Low, T. et al. Tunable optical properties of multilayers black phosphorus. Phys. Rev. B 90, 075434 (2014).
(
10.1103/PhysRevB.90.075434
) / Phys. Rev. B by T Low (2014) -
Lam, K., Dong, Z. & Guo, J. Performance limits projection of black phosphorous field-effect transistors. IEEE Electron. Device Lett. 35, 963–965 (2014).
(
10.1109/LED.2014.2333368
) / IEEE Electron. Device Lett. by K Lam (2014) -
Flores, E. et al. Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett. 106, 022102 (2015).
(
10.1063/1.4905636
) / Appl. Phys. Lett. by E Flores (2015) -
Qin, G. et al. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 17, 4854–4858 (2015).
(
10.1039/C4CP04858J
) / Phys. Chem. Chem. Phys. by G Qin (2015) -
Jain, A. & McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 5, 8501 (2015).
(
10.1038/srep08501
) / Sci. Rep. by A Jain (2015) -
Ong, Z., Cai, Y., Zhang, G. & Zhang, Y. Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C 118, 25272 (2014).
(
10.1021/jp5079357
) / J. Phys. Chem. C by Z Ong (2014) -
Liu, T.-H. & Chang, C.-C. Anisotropic thermal transport in phosphorene: effects of crystal orientation. Nanoscale 7, 10648–10654 (2015).
(
10.1039/C5NR01821H
) / Nanoscale by T-H Liu (2015) -
Slack, G. A. Thermal conductivity of elements with complex lattices: B, P, S. Phys. Rev. 139, A507 (1965).
(
10.1103/PhysRev.139.A507
) / Phys. Rev. by GA Slack (1965) -
Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).
(
10.1021/nl0731872
) / Nano Lett. by AA Balandin (2008) -
Cai, W. et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10, 1645–1651 (2010).
(
10.1021/nl9041966
) / Nano Lett. by W Cai (2010) -
Yan, R. et al. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8, 986–993 (2014).
(
10.1021/nn405826k
) / ACS Nano by R Yan (2014) -
Sahoo, S., Gaur, A. P. S., Ahmadi, M., Guinel, M. J.-F. & Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2 . J. Phys. Chem. C 117, 9042–9047 (2013).
(
10.1021/jp402509w
) / J. Phys. Chem. C by S Sahoo (2013) -
Zhou, H. et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res. 7, 1232–1240 (2014).
(
10.1007/s12274-014-0486-z
) / Nano Res. by H Zhou (2014) -
Bonini, N., Lazzeri, M., Marzari, N. & Mauri, F. Phonon anharmonicities in graphite and graphene. Phys. Rev. Lett. 99, 176802 (2007).
(
10.1103/PhysRevLett.99.176802
) / Phys. Rev. Lett. by N Bonini (2007) -
Fei, R. & Yang, L. Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett. 105, 083120 (2014).
(
10.1063/1.4894273
) / Appl. Phys. Lett. by R Fei (2014) -
Zhang, S. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014).
(
10.1021/nn503893j
) / ACS Nano by S Zhang (2014) -
Luo, Z. et al. Measurement of in-plane thermal conductivity of ultrathin films using micro-Raman spectroscopy. Nanoscale Microscale Thermophys. Eng. 18, 183–193 (2014).
(
10.1080/15567265.2014.892553
) / Nanoscale Microscale Thermophys. Eng. by Z Luo (2014) -
Pettes, M. T., Maassen, J., Jo, I., Lundstrom, M. S. & Shi, L. Effects of surface band bending and scattering on thermoelectric transport in suspended bismuth telluride nanoplates. Nano Lett. 13, 5316–5322 (2013).
(
10.1021/nl402828s
) / Nano Lett. by MT Pettes (2013) -
Zhu, L., Zhang, G. & Li, B. Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Phys. Rev. B 90, 214302 (2014).
(
10.1103/PhysRevB.90.214302
) / Phys. Rev. B by L Zhu (2014) -
Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).
(
10.1038/ncomms5475
) / Nat. Commun. by J Qiao (2014) -
Jeong, C., Datta, S. & Lundstrom, M. Thermal conductivity of bulk and thin-film silicon: a Landauer approach. J. Appl. Phys. 111, 093708 (2012).
(
10.1063/1.4710993
) / J. Appl. Phys. by C Jeong (2012) - Conrad, K., Maassen, J. & Lundstrom, M. LanTraP https://nanohub.org/resources/lantrap doi:10.4231/D3NP1WJ64 (2014).
-
Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).
(
10.1038/nature11439
) / Nature by K Biswas (2012) -
Avsar, A. et al. Air-stable transport in graphene contacted, fully encapsulated ultra thin black phosphorus-based field-effect transistors. ACS Nano 9, 4138–4145 (2015).
(
10.1021/acsnano.5b00289
) / ACS Nano by A Avsar (2015) -
Wu, J., Mao, N., Xie, L., Xu, H. & Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem. Int. Ed. Engl. 54, 2396–2399 (2015).
(
10.1002/ange.201410108
) / Angew. Chem. Int. Ed. Engl. by J Wu (2015) -
Ribeiro, H. B. et al. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 9, 4270–4276 (2015).
(
10.1021/acsnano.5b00698
) / ACS Nano by HB Ribeiro (2015)
Dates
Type | When |
---|---|
Created | 9 years, 10 months ago (Oct. 16, 2015, 5:55 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 5:39 a.m.) |
Indexed | 17 hours, 19 minutes ago (Aug. 22, 2025, 12:54 a.m.) |
Issued | 9 years, 10 months ago (Oct. 16, 2015) |
Published | 9 years, 10 months ago (Oct. 16, 2015) |
Published Online | 9 years, 10 months ago (Oct. 16, 2015) |
@article{Luo_2015, title={Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms9572}, DOI={10.1038/ncomms9572}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Luo, Zhe and Maassen, Jesse and Deng, Yexin and Du, Yuchen and Garrelts, Richard P. and Lundstrom, Mark S and Ye, Peide D. and Xu, Xianfan}, year={2015}, month=oct }