Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractMetal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxidation to render oriented (2.0.0) copper(I) oxide nanoplatelets on few-layered graphene. These films containing oriented copper(I) oxide exhibit as catalyst turnover numbers that can be three orders of magnitude higher for the Ullmann-type coupling, dehydrogenative coupling of dimethylphenylsilane withn-butanol and C–N cross-coupling than those of analogous unoriented graphene-supported copper(I) oxide nanoplatelets.

Bibliography

Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., Coman, S. M., Parvulescu, V. I., & García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1).

Authors 9
  1. Ana Primo (first)
  2. Ivan Esteve-Adell (additional)
  3. Juan F. Blandez (additional)
  4. Amarajothi Dhakshinamoorthy (additional)
  5. Mercedes Álvaro (additional)
  6. Natalia Candu (additional)
  7. Simona M. Coman (additional)
  8. Vasile I. Parvulescu (additional)
  9. Hermenegildo García (additional)
References 57 Referenced 70
  1. Huang, J. et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale 2, 2733–2738 (2010). (10.1039/c0nr00473a) / Nanoscale by J Huang (2010)
  2. Li, X., Wang, X., Song, S., Liu, D. & Zhang, H. Selectively deposited noble metal nanoparticles on fe3o4/graphene composites: stable, recyclable, and magnetically separable catalysts. Chem. Eur. J. 18, 7601–7760 (2012). (10.1002/chem.201103726) / Chem. Eur. J. by X Li (2012)
  3. Liang, Y. et al. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 134, 3517–3523 (2012). (10.1021/ja210924t) / J. Am. Chem. Soc. by Y Liang (2012)
  4. Ghanbarlou, H., Rowshanzamir, S., Kazeminasab, B. & Parnian, M. J. Non-precious metal nanoparticles supported on nitrogen-doped graphene as a promising catalyst for oxygen reduction reaction: synthesis, characterization and electrocatalytic performance. J. Power Sources 273, 981–989 (2015). (10.1016/j.jpowsour.2014.10.001) / J. Power Sources by H Ghanbarlou (2015)
  5. Chu, H. et al. Ionic-liquid-assisted preparation of carbon nanotube-supported uniform noble metal nanoparticles and their enhanced catalytic performance. Adv. Funct. Mater. 20, 3747–3752 (2010). (10.1002/adfm.201001240) / Adv. Funct. Mater. by H Chu (2010)
  6. Ramulifho, T., Ozoemena, K. I., Modibedi, R. M., Jafta, C. J. & Mathe, M. K. Fast microwave-assisted solvothermal synthesis of metal nanoparticles (Pd, Ni, Sn) supported on sulfonated MWCNTs: Pd-based bimetallic catalysts for ethanol oxidation in alkaline medium. Electrochim. Acta 59, 310–320 (2012). (10.1016/j.electacta.2011.10.071) / Electrochim. Acta by T Ramulifho (2012)
  7. Wang, Y., Zhao, Y., He, W., Yin, J. & Su, Y. Palladium nanoparticles supported on reduced graphene oxide: facile synthesis and highly efficient electrocatalytic performance for methanol oxidation. Thin Solid Films 544, 88–92 (2013). (10.1016/j.tsf.2013.04.119) / Thin Solid Films by Y Wang (2013)
  8. He, Y. et al. Metal nanoparticles supported graphene oxide 3D porous monoliths and their excellent catalytic activity. Mater. Chem. Phys. 134, 585–589 (2012). (10.1016/j.matchemphys.2012.04.011) / Mater. Chem. Phys. by Y He (2012)
  9. Li, Z. et al. One-pot synthesis of pd nanoparticle catalysts supported on n-doped carbon and application in the domino carbonylation. ACS Catal. 3, 839–845 (2013). (10.1021/cs400077r) / ACS Catal. by Z Li (2013)
  10. Xiang, G., He, J., Li, T., Zhuang, J. & Wang, X. Rapid preparation of noble metal nanocrystals via facile coreduction with graphene oxide and their enhanced catalytic properties. Nanoscale 3, 3737–3742 (2011). (10.1039/c1nr10439j) / Nanoscale by G Xiang (2011)
  11. Li, Z. et al. Experimental and DFT studies of gold nanoparticles supported on MgO(111) nano-sheets and their catalytic activity. Phys. Chem. Chem. Phys. 13, 2582–2589 (2011). (10.1039/c0cp01820a) / Phys. Chem. Chem. Phys. by Z Li (2011)
  12. Ding, M., Tang, Y. & Star, A. Understanding interfaces in metal-graphitic hybrid nanostructures. J. Phys. Chem. Lett. 4, 147–160 (2013). (10.1021/jz301711a) / J. Phys. Chem. Lett. by M Ding (2013)
  13. Wildgoose, G. G., Banks, C. E. & Compton, R. G. Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2, 182–193 (2006). (10.1002/smll.200500324) / Small by GG Wildgoose (2006)
  14. Blandez, J. F., Primo, A., Asiri, A. M., Álvaro, M. & García, H. Copper nanoparticles supported on doped graphenes as catalyst for the dehydrogenative coupling of silanes and alcohols. Angew. Chem. Int. Ed. 53, 12581–12586 (2014). (10.1002/anie.201405669) / Angew. Chem. Int. Ed. by JF Blandez (2014)
  15. Yang, M. Q., Zhang, N., Pagliaro, M. & Xu, Y. J. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 43, 8240–8254 (2014). (10.1039/C4CS00213J) / Chem. Soc. Rev. by MQ Yang (2014)
  16. Zhang, N., Zhang, Y. & Xu, Y. J. Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4, 5792–5813 (2012). (10.1039/c2nr31480k) / Nanoscale by N Zhang (2012)
  17. Parga, A. L. V. de., Ha nacido una estrella. El grafeno. An. Quím. 107, 213–220 (2011). / An. Quím. by ALVde, Parga (2011)
  18. Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S. & Govindaraj, A. Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009). (10.1002/anie.200901678) / Angew. Chem. Int. Ed. by CNR Rao (2009)
  19. Sun, T. et al. Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity. Nature 3, 1–6 (2013). / Nature by T Sun (2013)
  20. Yoo, E. et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 9, 2255–2259 (2009). (10.1021/nl900397t) / Nano Lett. by E Yoo (2009)
  21. Jin, X. et al. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals. ACS Nano 7, 1309–1316 (2013). (10.1021/nn304820v) / ACS Nano by X Jin (2013)
  22. Hong, C. et al. Graphene oxide stabilized Cu2O for shape selective nanocatalysis. J. Mater. Chem. A 2, 7147–7151 (2014). (10.1039/c4ta00599f) / J. Mater. Chem. A by C Hong (2014)
  23. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008). (10.1021/nl801827v) / Nano Lett. by A Reina (2008)
  24. Wei, D. et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009). (10.1021/nl803279t) / Nano Lett. by D Wei (2009)
  25. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009). (10.1038/nature07719) / Nature by KS Kim (2009)
  26. Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011). (10.1021/ja109793s) / J. Am. Chem. Soc. by X Li (2011)
  27. Mattevi, C., Kima, H. & Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324–3334 (2010). (10.1039/C0JM02126A) / J. Mater. Chem. by C Mattevi (2010)
  28. Liu, W., Li, H., Xu, C., Khatami, Y. & Banerjee, K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49, 4122–4130 (2011). (10.1016/j.carbon.2011.05.047) / Carbon by W Liu (2011)
  29. Losurdo, M., Giangregorio, M. M., Capezzuto, P. & Bruno, G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13, 20836–20843 (2011). (10.1039/c1cp22347j) / Phys. Chem. Chem. Phys. by M Losurdo (2011)
  30. Gao, L., Guest, J. R. & Guisinguer, N. P. Epitaxial graphene on Cu (111). Nano Lett. 10, 3512–3516 (2010). (10.1021/nl1016706) / Nano Lett. by L Gao (2010)
  31. Zhao, L. et al. Influence of copper crystal surface on the growth of large area monolayer graphene. Solid State Commun. 151, 509–513 (2011). (10.1016/j.ssc.2011.01.014) / Solid State Commun. by L Zhao (2011)
  32. Wood, J. D., Schmucker, S. W., Lyons, A. S., Pop, E. & Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11, 4547–4554 (2011). (10.1021/nl201566c) / Nano Lett. by JD Wood (2011)
  33. Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M. & Garcia, H. From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem. Commun. 48, 9254–9256 (2012). (10.1039/c2cc34978g) / Chem. Commun. by A Primo (2012)
  34. Primo, A., Sánchez, E., Delgado, J. M. & García, H. High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon 68, 777–783 (2014). (10.1016/j.carbon.2013.11.068) / Carbon by A Primo (2014)
  35. Primo, A., Forneli, A., Corma, A. & García, H. From biomass wastes to highly efficient CO2 adsorbents: graphitisation of chitosan and alginate biopolymers. ChemSusChem. 5, 2207–2214 (2012). (10.1002/cssc.201200366) / ChemSusChem. by A Primo (2012)
  36. Ravi Kumar, M. N. V. A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000). (10.1016/S1381-5148(00)00038-9) / React. Funct. Polym. by MNV Ravi Kumar (2000)
  37. Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006). (10.1016/j.progpolymsci.2006.06.001) / Prog. Polym. Sci. by M Rinaudo (2006)
  38. Rinaudo, M. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 57, 397–430 (2008). (10.1002/pi.2378) / Polym. Int. by M Rinaudo (2008)
  39. Latorre-Sanchez, M. et al. The synthesis of a hybrid graphene-nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon 50, 518–525 (2012). (10.1016/j.carbon.2011.09.007) / Carbon by M Latorre-Sanchez (2012)
  40. Park, B. K. et al. Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Colloid Interface Sci. 311, 417–424 (2007). (10.1016/j.jcis.2007.03.039) / J. Colloid Interface Sci. by BK Park (2007)
  41. Lavorato, C., Primo, A., Molinari, R. & Garcia, H. Natural alginate as a graphene precursor and template in the synthesis of nanoparticulate ceria/graphene water oxidation photocatalysts. ACS Catal. 4, 497–504 (2014). (10.1021/cs401068m) / ACS Catal. by C Lavorato (2014)
  42. Wu, S. et al. Electrochemical deposition of Cl-doped n-type Cu2O on reduced graphene oxide electrodes. J. Mater. Chem. 21, 3467–3470 (2011). (10.1039/C0JM02267E) / J. Mater. Chem. by S Wu (2011)
  43. Jiang, L. et al. Surface-enhanced Raman scattering spectra of adsorbates on Cu2O nanospheres: charge-transfer and electromagnetic enhancement. Nanoscale 5, 2784–2789 (2013). (10.1039/c3nr33502j) / Nanoscale by L Jiang (2013)
  44. Sridhara Rao, D. V., Muraleedharan, K. & Humphreys, C. J. Microscopy Science, Technology, Applications and Education Vol. 2, 1232–1244Formatex, Badajos (2011). / Microscopy Science, Technology, Applications and Education by DV Sridhara Rao (2011)
  45. Lewin, A. H. & Cohen, T. The mechanism of the Ullman reaction. Detection of an organocopper intermediate. Tetrahedron Lett. 6, 4531–4536 (1965). (10.1016/S0040-4039(01)89057-2) / Tetrahedron Lett. by AH Lewin (1965)
  46. Hassan, J., Sévignon, M., Gozzi, C., Schulz, E. & Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 102, 1359–1469 (2002). (10.1021/cr000664r) / Chem. Rev. by J Hassan (2002)
  47. Ma, D., Cai, Q. & Zhang, H. Mild method for Ullman coupling reaction of amines and aryl halides. Org. Lett. 5, 2453–2455 (2003). (10.1021/ol0346584) / Org. Lett. by D Ma (2003)
  48. Li, Y., Gao, W., Ci, L., Wang, C. & Ajayan, P. M. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 48, 1124–1130 (2010). (10.1016/j.carbon.2009.11.034) / Carbon by Y Li (2010)
  49. Ong, W.-J., Tan, L.-L., Chai, S.-P. & Yong, S.-T. Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans. 44, 1249–1257 (2015). (10.1039/C4DT02940B) / Dalton Trans. by W-J Ong (2015)
  50. Luo, C., Zhang, Y., Zeng, X., Zeng, Y. & Wang, Y. The role of poly(ethylene glycol) in the formation of silver nanoparticles. J. Colloid Interface Sci. 288, 444–448 (2005). (10.1016/j.jcis.2005.03.005) / J. Colloid Interface Sci. by C Luo (2005)
  51. Wu, S.-H. & Chen, D.-H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interface Sci. 259, 282–286 (2003). (10.1016/S0021-9797(02)00135-2) / J. Colloid Interface Sci. by S-H Wu (2003)
  52. Hou, Z., Theyssen, N., Brinkmann, A. & Leitner, W. Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide. Angew. Chem. Int. Ed. 117, 1370–1373 (2005). (10.1002/ange.200461493) / Angew. Chem. Int. Ed. by Z Hou (2005)
  53. Dhakshinamoorthy, A., Navalon, S., Sempere, D., Alvaro, M. & Garcia, H. Reduction of alkenes catalyzed by copper nanoparticles supported on diamond nanoparticles. Chem. Commun. 49, 2359–2361 (2013). (10.1039/c3cc39011j) / Chem. Commun. by A Dhakshinamoorthy (2013)
  54. Ito, H., Watanabe, A. & Sawamura, M. Versatile dehydrogenative alcohol silylation catalyzed by Cu (I)-phosphine complex. Org. Lett. 7, 1869–1871 (2005). (10.1021/ol050559+) / Org. Lett. by H Ito (2005)
  55. Rendler, S. et al. Stereoselective alcohol silylation by dehydrogenative Si-O coupling: scope, limitations, and mechanism of the Cu-H-catalyzed non-enzimatic kinetic resolution with silicon-stereogenic silanes. Chem. Eur. J. 14, 11512–11528 (2008). (10.1002/chem.200801377) / Chem. Eur. J. by S Rendler (2008)
  56. Cristau, H. J., Cellier, P. P., Spindler, J. F. & Taillefer, M. Highly efficient and mild copper-catalyzed N- and C-arylations with aryl bromides and iodides. Chemistry 10, 5607–5622 (2004). (10.1002/chem.200400582) / Chemistry by HJ Cristau (2004)
  57. Shafir, A. & Buchwald, S. L. Highly selective room-temperature copper-catalyzed C-N coupling reactions. J. Am. Chem. Soc. 128, 8742–8743 (2006). (10.1021/ja063063b) / J. Am. Chem. Soc. by A Shafir (2006)
Dates
Type When
Created 9 years, 10 months ago (Oct. 16, 2015, 5:54 a.m.)
Deposited 1 year, 2 months ago (June 11, 2024, 5:02 p.m.)
Indexed 6 days, 4 hours ago (Aug. 26, 2025, 2:27 a.m.)
Issued 9 years, 10 months ago (Oct. 16, 2015)
Published 9 years, 10 months ago (Oct. 16, 2015)
Published Online 9 years, 10 months ago (Oct. 16, 2015)
Funders 0

None

@article{Primo_2015, title={High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms9561}, DOI={10.1038/ncomms9561}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Primo, Ana and Esteve-Adell, Ivan and Blandez, Juan F. and Dhakshinamoorthy, Amarajothi and Álvaro, Mercedes and Candu, Natalia and Coman, Simona M. and Parvulescu, Vasile I. and García, Hermenegildo}, year={2015}, month=oct }