Abstract
AbstractMetal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.1 facet-oriented copper nanoplatelets supported on few-layered graphene. Oriented (1.1.1) copper nanoplatelets on graphene undergo spontaneous oxidation to render oriented (2.0.0) copper(I) oxide nanoplatelets on few-layered graphene. These films containing oriented copper(I) oxide exhibit as catalyst turnover numbers that can be three orders of magnitude higher for the Ullmann-type coupling, dehydrogenative coupling of dimethylphenylsilane withn-butanol and C–N cross-coupling than those of analogous unoriented graphene-supported copper(I) oxide nanoplatelets.
References
57
Referenced
70
-
Huang, J. et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale 2, 2733–2738 (2010).
(
10.1039/c0nr00473a
) / Nanoscale by J Huang (2010) -
Li, X., Wang, X., Song, S., Liu, D. & Zhang, H. Selectively deposited noble metal nanoparticles on fe3o4/graphene composites: stable, recyclable, and magnetically separable catalysts. Chem. Eur. J. 18, 7601–7760 (2012).
(
10.1002/chem.201103726
) / Chem. Eur. J. by X Li (2012) -
Liang, Y. et al. Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 134, 3517–3523 (2012).
(
10.1021/ja210924t
) / J. Am. Chem. Soc. by Y Liang (2012) -
Ghanbarlou, H., Rowshanzamir, S., Kazeminasab, B. & Parnian, M. J. Non-precious metal nanoparticles supported on nitrogen-doped graphene as a promising catalyst for oxygen reduction reaction: synthesis, characterization and electrocatalytic performance. J. Power Sources 273, 981–989 (2015).
(
10.1016/j.jpowsour.2014.10.001
) / J. Power Sources by H Ghanbarlou (2015) -
Chu, H. et al. Ionic-liquid-assisted preparation of carbon nanotube-supported uniform noble metal nanoparticles and their enhanced catalytic performance. Adv. Funct. Mater. 20, 3747–3752 (2010).
(
10.1002/adfm.201001240
) / Adv. Funct. Mater. by H Chu (2010) -
Ramulifho, T., Ozoemena, K. I., Modibedi, R. M., Jafta, C. J. & Mathe, M. K. Fast microwave-assisted solvothermal synthesis of metal nanoparticles (Pd, Ni, Sn) supported on sulfonated MWCNTs: Pd-based bimetallic catalysts for ethanol oxidation in alkaline medium. Electrochim. Acta 59, 310–320 (2012).
(
10.1016/j.electacta.2011.10.071
) / Electrochim. Acta by T Ramulifho (2012) -
Wang, Y., Zhao, Y., He, W., Yin, J. & Su, Y. Palladium nanoparticles supported on reduced graphene oxide: facile synthesis and highly efficient electrocatalytic performance for methanol oxidation. Thin Solid Films 544, 88–92 (2013).
(
10.1016/j.tsf.2013.04.119
) / Thin Solid Films by Y Wang (2013) -
He, Y. et al. Metal nanoparticles supported graphene oxide 3D porous monoliths and their excellent catalytic activity. Mater. Chem. Phys. 134, 585–589 (2012).
(
10.1016/j.matchemphys.2012.04.011
) / Mater. Chem. Phys. by Y He (2012) -
Li, Z. et al. One-pot synthesis of pd nanoparticle catalysts supported on n-doped carbon and application in the domino carbonylation. ACS Catal. 3, 839–845 (2013).
(
10.1021/cs400077r
) / ACS Catal. by Z Li (2013) -
Xiang, G., He, J., Li, T., Zhuang, J. & Wang, X. Rapid preparation of noble metal nanocrystals via facile coreduction with graphene oxide and their enhanced catalytic properties. Nanoscale 3, 3737–3742 (2011).
(
10.1039/c1nr10439j
) / Nanoscale by G Xiang (2011) -
Li, Z. et al. Experimental and DFT studies of gold nanoparticles supported on MgO(111) nano-sheets and their catalytic activity. Phys. Chem. Chem. Phys. 13, 2582–2589 (2011).
(
10.1039/c0cp01820a
) / Phys. Chem. Chem. Phys. by Z Li (2011) -
Ding, M., Tang, Y. & Star, A. Understanding interfaces in metal-graphitic hybrid nanostructures. J. Phys. Chem. Lett. 4, 147–160 (2013).
(
10.1021/jz301711a
) / J. Phys. Chem. Lett. by M Ding (2013) -
Wildgoose, G. G., Banks, C. E. & Compton, R. G. Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2, 182–193 (2006).
(
10.1002/smll.200500324
) / Small by GG Wildgoose (2006) -
Blandez, J. F., Primo, A., Asiri, A. M., Álvaro, M. & García, H. Copper nanoparticles supported on doped graphenes as catalyst for the dehydrogenative coupling of silanes and alcohols. Angew. Chem. Int. Ed. 53, 12581–12586 (2014).
(
10.1002/anie.201405669
) / Angew. Chem. Int. Ed. by JF Blandez (2014) -
Yang, M. Q., Zhang, N., Pagliaro, M. & Xu, Y. J. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 43, 8240–8254 (2014).
(
10.1039/C4CS00213J
) / Chem. Soc. Rev. by MQ Yang (2014) -
Zhang, N., Zhang, Y. & Xu, Y. J. Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4, 5792–5813 (2012).
(
10.1039/c2nr31480k
) / Nanoscale by N Zhang (2012) - Parga, A. L. V. de., Ha nacido una estrella. El grafeno. An. Quím. 107, 213–220 (2011). / An. Quím. by ALVde, Parga (2011)
-
Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S. & Govindaraj, A. Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009).
(
10.1002/anie.200901678
) / Angew. Chem. Int. Ed. by CNR Rao (2009) - Sun, T. et al. Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity. Nature 3, 1–6 (2013). / Nature by T Sun (2013)
-
Yoo, E. et al. Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 9, 2255–2259 (2009).
(
10.1021/nl900397t
) / Nano Lett. by E Yoo (2009) -
Jin, X. et al. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals. ACS Nano 7, 1309–1316 (2013).
(
10.1021/nn304820v
) / ACS Nano by X Jin (2013) -
Hong, C. et al. Graphene oxide stabilized Cu2O for shape selective nanocatalysis. J. Mater. Chem. A 2, 7147–7151 (2014).
(
10.1039/c4ta00599f
) / J. Mater. Chem. A by C Hong (2014) -
Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008).
(
10.1021/nl801827v
) / Nano Lett. by A Reina (2008) -
Wei, D. et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009).
(
10.1021/nl803279t
) / Nano Lett. by D Wei (2009) -
Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).
(
10.1038/nature07719
) / Nature by KS Kim (2009) -
Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011).
(
10.1021/ja109793s
) / J. Am. Chem. Soc. by X Li (2011) -
Mattevi, C., Kima, H. & Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324–3334 (2010).
(
10.1039/C0JM02126A
) / J. Mater. Chem. by C Mattevi (2010) -
Liu, W., Li, H., Xu, C., Khatami, Y. & Banerjee, K. Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49, 4122–4130 (2011).
(
10.1016/j.carbon.2011.05.047
) / Carbon by W Liu (2011) -
Losurdo, M., Giangregorio, M. M., Capezzuto, P. & Bruno, G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13, 20836–20843 (2011).
(
10.1039/c1cp22347j
) / Phys. Chem. Chem. Phys. by M Losurdo (2011) -
Gao, L., Guest, J. R. & Guisinguer, N. P. Epitaxial graphene on Cu (111). Nano Lett. 10, 3512–3516 (2010).
(
10.1021/nl1016706
) / Nano Lett. by L Gao (2010) -
Zhao, L. et al. Influence of copper crystal surface on the growth of large area monolayer graphene. Solid State Commun. 151, 509–513 (2011).
(
10.1016/j.ssc.2011.01.014
) / Solid State Commun. by L Zhao (2011) -
Wood, J. D., Schmucker, S. W., Lyons, A. S., Pop, E. & Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11, 4547–4554 (2011).
(
10.1021/nl201566c
) / Nano Lett. by JD Wood (2011) -
Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M. & Garcia, H. From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem. Commun. 48, 9254–9256 (2012).
(
10.1039/c2cc34978g
) / Chem. Commun. by A Primo (2012) -
Primo, A., Sánchez, E., Delgado, J. M. & García, H. High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon 68, 777–783 (2014).
(
10.1016/j.carbon.2013.11.068
) / Carbon by A Primo (2014) -
Primo, A., Forneli, A., Corma, A. & García, H. From biomass wastes to highly efficient CO2 adsorbents: graphitisation of chitosan and alginate biopolymers. ChemSusChem. 5, 2207–2214 (2012).
(
10.1002/cssc.201200366
) / ChemSusChem. by A Primo (2012) -
Ravi Kumar, M. N. V. A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000).
(
10.1016/S1381-5148(00)00038-9
) / React. Funct. Polym. by MNV Ravi Kumar (2000) -
Rinaudo, M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006).
(
10.1016/j.progpolymsci.2006.06.001
) / Prog. Polym. Sci. by M Rinaudo (2006) -
Rinaudo, M. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 57, 397–430 (2008).
(
10.1002/pi.2378
) / Polym. Int. by M Rinaudo (2008) -
Latorre-Sanchez, M. et al. The synthesis of a hybrid graphene-nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon 50, 518–525 (2012).
(
10.1016/j.carbon.2011.09.007
) / Carbon by M Latorre-Sanchez (2012) -
Park, B. K. et al. Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Colloid Interface Sci. 311, 417–424 (2007).
(
10.1016/j.jcis.2007.03.039
) / J. Colloid Interface Sci. by BK Park (2007) -
Lavorato, C., Primo, A., Molinari, R. & Garcia, H. Natural alginate as a graphene precursor and template in the synthesis of nanoparticulate ceria/graphene water oxidation photocatalysts. ACS Catal. 4, 497–504 (2014).
(
10.1021/cs401068m
) / ACS Catal. by C Lavorato (2014) -
Wu, S. et al. Electrochemical deposition of Cl-doped n-type Cu2O on reduced graphene oxide electrodes. J. Mater. Chem. 21, 3467–3470 (2011).
(
10.1039/C0JM02267E
) / J. Mater. Chem. by S Wu (2011) -
Jiang, L. et al. Surface-enhanced Raman scattering spectra of adsorbates on Cu2O nanospheres: charge-transfer and electromagnetic enhancement. Nanoscale 5, 2784–2789 (2013).
(
10.1039/c3nr33502j
) / Nanoscale by L Jiang (2013) - Sridhara Rao, D. V., Muraleedharan, K. & Humphreys, C. J. Microscopy Science, Technology, Applications and Education Vol. 2, 1232–1244Formatex, Badajos (2011). / Microscopy Science, Technology, Applications and Education by DV Sridhara Rao (2011)
-
Lewin, A. H. & Cohen, T. The mechanism of the Ullman reaction. Detection of an organocopper intermediate. Tetrahedron Lett. 6, 4531–4536 (1965).
(
10.1016/S0040-4039(01)89057-2
) / Tetrahedron Lett. by AH Lewin (1965) -
Hassan, J., Sévignon, M., Gozzi, C., Schulz, E. & Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 102, 1359–1469 (2002).
(
10.1021/cr000664r
) / Chem. Rev. by J Hassan (2002) -
Ma, D., Cai, Q. & Zhang, H. Mild method for Ullman coupling reaction of amines and aryl halides. Org. Lett. 5, 2453–2455 (2003).
(
10.1021/ol0346584
) / Org. Lett. by D Ma (2003) -
Li, Y., Gao, W., Ci, L., Wang, C. & Ajayan, P. M. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 48, 1124–1130 (2010).
(
10.1016/j.carbon.2009.11.034
) / Carbon by Y Li (2010) -
Ong, W.-J., Tan, L.-L., Chai, S.-P. & Yong, S.-T. Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane. Dalton Trans. 44, 1249–1257 (2015).
(
10.1039/C4DT02940B
) / Dalton Trans. by W-J Ong (2015) -
Luo, C., Zhang, Y., Zeng, X., Zeng, Y. & Wang, Y. The role of poly(ethylene glycol) in the formation of silver nanoparticles. J. Colloid Interface Sci. 288, 444–448 (2005).
(
10.1016/j.jcis.2005.03.005
) / J. Colloid Interface Sci. by C Luo (2005) -
Wu, S.-H. & Chen, D.-H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interface Sci. 259, 282–286 (2003).
(
10.1016/S0021-9797(02)00135-2
) / J. Colloid Interface Sci. by S-H Wu (2003) -
Hou, Z., Theyssen, N., Brinkmann, A. & Leitner, W. Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide. Angew. Chem. Int. Ed. 117, 1370–1373 (2005).
(
10.1002/ange.200461493
) / Angew. Chem. Int. Ed. by Z Hou (2005) -
Dhakshinamoorthy, A., Navalon, S., Sempere, D., Alvaro, M. & Garcia, H. Reduction of alkenes catalyzed by copper nanoparticles supported on diamond nanoparticles. Chem. Commun. 49, 2359–2361 (2013).
(
10.1039/c3cc39011j
) / Chem. Commun. by A Dhakshinamoorthy (2013) -
Ito, H., Watanabe, A. & Sawamura, M. Versatile dehydrogenative alcohol silylation catalyzed by Cu (I)-phosphine complex. Org. Lett. 7, 1869–1871 (2005).
(
10.1021/ol050559+
) / Org. Lett. by H Ito (2005) -
Rendler, S. et al. Stereoselective alcohol silylation by dehydrogenative Si-O coupling: scope, limitations, and mechanism of the Cu-H-catalyzed non-enzimatic kinetic resolution with silicon-stereogenic silanes. Chem. Eur. J. 14, 11512–11528 (2008).
(
10.1002/chem.200801377
) / Chem. Eur. J. by S Rendler (2008) -
Cristau, H. J., Cellier, P. P., Spindler, J. F. & Taillefer, M. Highly efficient and mild copper-catalyzed N- and C-arylations with aryl bromides and iodides. Chemistry 10, 5607–5622 (2004).
(
10.1002/chem.200400582
) / Chemistry by HJ Cristau (2004) -
Shafir, A. & Buchwald, S. L. Highly selective room-temperature copper-catalyzed C-N coupling reactions. J. Am. Chem. Soc. 128, 8742–8743 (2006).
(
10.1021/ja063063b
) / J. Am. Chem. Soc. by A Shafir (2006)
Dates
Type | When |
---|---|
Created | 9 years, 10 months ago (Oct. 16, 2015, 5:54 a.m.) |
Deposited | 1 year, 2 months ago (June 11, 2024, 5:02 p.m.) |
Indexed | 6 days, 4 hours ago (Aug. 26, 2025, 2:27 a.m.) |
Issued | 9 years, 10 months ago (Oct. 16, 2015) |
Published | 9 years, 10 months ago (Oct. 16, 2015) |
Published Online | 9 years, 10 months ago (Oct. 16, 2015) |
@article{Primo_2015, title={High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms9561}, DOI={10.1038/ncomms9561}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Primo, Ana and Esteve-Adell, Ivan and Blandez, Juan F. and Dhakshinamoorthy, Amarajothi and Álvaro, Mercedes and Candu, Natalia and Coman, Simona M. and Parvulescu, Vasile I. and García, Hermenegildo}, year={2015}, month=oct }