Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractBy regulating access to the genetic code, DNA supercoiling strongly affects DNA metabolism. Despite its importance, however, much about supercoiled DNA (positively supercoiled DNA, in particular) remains unknown. Here we use electron cryo-tomography together with biochemical analyses to investigate structures of individual purified DNA minicircle topoisomers with defined degrees of supercoiling. Our results reveal that each topoisomer, negative or positive, adopts a unique and surprisingly wide distribution of three-dimensional conformations. Moreover, we uncover striking differences in how the topoisomers handle torsional stress. As negative supercoiling increases, bases are increasingly exposed. Beyond a sharp supercoiling threshold, we also detect exposed bases in positively supercoiled DNA. Molecular dynamics simulations independently confirm the conformational heterogeneity and provide atomistic insight into the flexibility of supercoiled DNA. Our integrated approach reveals the three-dimensional structures of DNA that are essential for its function.

Bibliography

Irobalieva, R. N., Fogg, J. M., Catanese, D. J., Sutthibutpong, T., Chen, M., Barker, A. K., Ludtke, S. J., Harris, S. A., Schmid, M. F., Chiu, W., & Zechiedrich, L. (2015). Structural diversity of supercoiled DNA. Nature Communications, 6(1).

Authors 11
  1. Rossitza N. Irobalieva (first)
  2. Jonathan M. Fogg (additional)
  3. Daniel J. Catanese (additional)
  4. Thana Sutthibutpong (additional)
  5. Muyuan Chen (additional)
  6. Anna K. Barker (additional)
  7. Steven J. Ludtke (additional)
  8. Sarah A. Harris (additional)
  9. Michael F. Schmid (additional)
  10. Wah Chiu (additional)
  11. Lynn Zechiedrich (additional)
References 57 Referenced 137
  1. Watson, J. D. & Crick, F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953). (10.1038/171737a0) / Nature by JD Watson (1953)
  2. Fogg, J. M. et al. Bullied no more: when and how DNA shoves proteins around. Q Rev. Biophys. 45, 257–299 (2012). (10.1017/S0033583512000054) / Q Rev. Biophys. by JM Fogg (2012)
  3. Baranello, L., Levens, D., Gupta, A. & Kouzine, F. The importance of being supercoiled: How DNA mechanics regulate dynamic processes. Biochim. Biophys. Acta BBA - Gene Regul. Mech. 1819, 632–638 (2012). (10.1016/j.bbagrm.2011.12.007) / Biochim. Biophys. Acta BBA - Gene Regul. Mech. by L Baranello (2012)
  4. Kouzine, F. et al. Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat. Struct. Mol. Biol. 20, 396–403 (2013). (10.1038/nsmb.2517) / Nat. Struct. Mol. Biol. by F Kouzine (2013)
  5. Chong, S., Chen, C., Ge, H. & Xie, X. S. Mechanism of transcriptional bursting in bacteria. Cell 158, 314–326 (2014). (10.1016/j.cell.2014.05.038) / Cell by S Chong (2014)
  6. Adrian, M. et al. Direct visualization of supercoiled DNA molecules in solution. EMBO J. 9, 4551–4554 (1990). (10.1002/j.1460-2075.1990.tb07907.x) / EMBO J. by M Adrian (1990)
  7. Boles, T. C., White, J. H. & Cozzarelli, N. R. Structure of plectonemically supercoiled DNA. J. Mol. Biol. 213, 931–951 (1990). (10.1016/S0022-2836(05)80272-4) / J. Mol. Biol. by TC Boles (1990)
  8. Bednar, J. et al. The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo. J. Mol. Biol. 235, 825–847 (1994). (10.1006/jmbi.1994.1042) / J. Mol. Biol. by J Bednar (1994)
  9. Levene, S. D., Donahue, C., Boles, T. C. & Cozzarelli, N. R. Analysis of the structure of dimeric DNA catenanes by electron microscopy. Biophys. J. 69, 1036–1045 (1995). (10.1016/S0006-3495(95)79978-7) / Biophys. J. by SD Levene (1995)
  10. Cherny, D. I. & Jovin, T. M. Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure. J. Mol. Biol. 313, 295–307 (2001). (10.1006/jmbi.2001.5031) / J. Mol. Biol. by DI Cherny (2001)
  11. Amzallag, A. et al. 3D reconstruction and comparison of shapes of DNA minicircles observed by cryo-electron microscopy. Nucleic Acids Res. 34, e125 (2006). (10.1093/nar/gkl675) / Nucleic Acids Res. by A Amzallag (2006)
  12. Demurtas, D. et al. Bending modes of DNA directly addressed by cryo-electron microscopy of DNA minicircles. Nucleic Acids Res. 37, 2882–2893 (2009). (10.1093/nar/gkp137) / Nucleic Acids Res. by D Demurtas (2009)
  13. Lionberger, T. A. et al. Cooperative kinking at distant sites in mechanically stressed DNA. Nucleic Acids Res. 39, 9820–9832 (2011). (10.1093/nar/gkr666) / Nucleic Acids Res. by TA Lionberger (2011)
  14. Fogg, J. M. et al. Exploring writhe in supercoiled minicircle DNA. J. Phys. Condens. Matter 18, S145–S159 (2006). (10.1088/0953-8984/18/14/S01) / J. Phys. Condens. Matter by JM Fogg (2006)
  15. Cloutier, T. E. & Widom, J. Spontaneous sharp bending of double-stranded DNA. Mol. Cell 14, 355–362 (2004). (10.1016/S1097-2765(04)00210-2) / Mol. Cell by TE Cloutier (2004)
  16. Cloutier, T. E. & Widom, J. DNA twisting flexibility and the formation of sharply looped protein-DNA complexes. Proc. Natl Acad. Sci. USA. 102, 3645–3650 (2005). (10.1073/pnas.0409059102) / Proc. Natl Acad. Sci. USA. by TE Cloutier (2005)
  17. Bond, L. M., Peters, J. P., Becker, N. A., Kahn, J. D. & Maher, L. J. Gene repression by minimal lac loops in vivo. Nucleic Acids Res. 38, 8072–8082 (2010). (10.1093/nar/gkq755) / Nucleic Acids Res. by LM Bond (2010)
  18. Shibata, Y. et al. Extrachromosomal microDNAs and chromosomal microdeletions in normal tissues. Science 336, 82–86 (2012). (10.1126/science.1213307) / Science by Y Shibata (2012)
  19. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q Rev. Biophys. 21, 129–228 (1988). (10.1017/S0033583500004297) / Q Rev. Biophys. by J Dubochet (1988)
  20. Depew, D. E. & Wang, J. C. Conformational fluctuations of DNA helix. Proc. Natl Acad. Sci. USA 72, 4275–4279 (1975). (10.1073/pnas.72.11.4275) / Proc. Natl Acad. Sci. USA by DE Depew (1975)
  21. Peters, J. P. & Maher, L. J. DNA curvature and flexibility in vitro and in vivo. Q Rev. Biophys. 43, 23–63 (2010). (10.1017/S0033583510000077) / Q Rev. Biophys. by JP Peters (2010)
  22. Vetcher, A. A., McEwen, A. E., Abujarour, R., Hanke, A. & Levene, S. D. Gel mobilities of linking-number topoisomers and their dependence on DNA helical repeat and elasticity. Biophys. Chem. 148, 104–111 (2010). (10.1016/j.bpc.2010.02.016) / Biophys. Chem. by AA Vetcher (2010)
  23. Lau, P. P. & Gray, H. B. Extracellular nucleases of Alteromonas espejiana BAL 31.IV. The single strand-specific deoxyriboendonuclease activity as a probe for regions of altered secondary structure in negatively and positively supercoiled closed circular DNA. Nucleic Acids Res. 6, 331–357 (1979). (10.1093/nar/6.1.331) / Nucleic Acids Res. by PP Lau (1979)
  24. Kilpatrick, M. W., Wei, C. F., Gray, H. B. & Wells, R. D. BAL 31 nuclease as a probe in concentrated salt for the B-Z DNA junction. Nucleic Acids Res. 11, 3811–3822 (1983). (10.1093/nar/11.11.3811) / Nucleic Acids Res. by MW Kilpatrick (1983)
  25. Allemand, J. F., Bensimon, D., Lavery, R. & Croquette, V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc. Natl Acad. Sci. USA 95, 14152–14157 (1998). (10.1073/pnas.95.24.14152) / Proc. Natl Acad. Sci. USA by JF Allemand (1998)
  26. Lankas, F., Lavery, R. & Maddocks, J. H. Kinking occurs during molecular dynamics simulations of small DNA minicircles. Structure. 14, 1527–1534 (2006). (10.1016/j.str.2006.08.004) / Structure. by F Lankas (2006)
  27. Mitchell, J. S., Laughton, C. A. & Harris, S. A. Atomistic simulations reveal bubbles, kinks and wrinkles in supercoiled DNA. Nucleic Acids Res. 39, 3928–3938 (2011). (10.1093/nar/gkq1312) / Nucleic Acids Res. by JS Mitchell (2011)
  28. Randall, G. L., Zechiedrich, L. & Pettitt, B. M. In the absence of writhe, DNA relieves torsional stress with localized, sequence-dependent structural failure to preserve B-form. Nucleic Acids Res. 37, 5568–5577 (2009). (10.1093/nar/gkp556) / Nucleic Acids Res. by GL Randall (2009)
  29. Du, Q., Kotlyar, A. & Vologodskii, A. Kinking the double helix by bending deformation. Nucleic Acids Res. 36, 1120–1128 (2008). (10.1093/nar/gkm1125) / Nucleic Acids Res. by Q Du (2008)
  30. Benham, C. J. Energetics of the strand separation transition in superhelical DNA. J. Mol. Biol. 225, 835–847 (1992). (10.1016/0022-2836(92)90404-8) / J. Mol. Biol. by CJ Benham (1992)
  31. Benham, C. J. & Bi, C. The analysis of stress-induced duplex destabilization in long genomic DNA sequences. J. Comput. Biol. 11, 519–543 (2004). (10.1089/cmb.2004.11.519) / J. Comput. Biol. by CJ Benham (2004)
  32. Bi, C. & Benham, C. J. WebSIDD: server for predicting stress-induced duplex destabilized (SIDD) sites in superhelical DNA. Bioinforma. Oxf. Engl. 20, 1477–1479 (2004). (10.1093/bioinformatics/bth304) / Bioinforma. Oxf. Engl. by C Bi (2004)
  33. Pavlicek, J. W. et al. Supercoiling-induced DNA bending. Biochemistry 43, 10664–10668 (2004). (10.1021/bi0362572) / Biochemistry by JW Pavlicek (2004)
  34. Ross, W. & Landy, A. Anomalous electrophoretic mobility of restriction fragments containing the att region. J. Mol. Biol. 156, 523–529 (1982). (10.1016/0022-2836(82)90264-9) / J. Mol. Biol. by W Ross (1982)
  35. Landy, A. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem. 58, 913–949 (1989). (10.1146/annurev.bi.58.070189.004405) / Annu. Rev. Biochem. by A Landy (1989)
  36. Laundon, C. H. & Griffith, J. D. Curved helix segments can uniquely orient the topology of supertwisted DNA. Cell 52, 545–549 (1988). (10.1016/0092-8674(88)90467-9) / Cell by CH Laundon (1988)
  37. Bliska, J. B. & Cozzarelli, N. R. Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. J. Mol. Biol. 194, 205–218 (1987). (10.1016/0022-2836(87)90369-X) / J. Mol. Biol. by JB Bliska (1987)
  38. Hildebrandt, E. R. & Cozzarelli, N. R. Comparison of recombination in vitro and in E. coli cells: measure of the effective concentration of DNA in vivo. Cell 81, 331–340 (1995). (10.1016/0092-8674(95)90386-0) / Cell by ER Hildebrandt (1995)
  39. Kramer, P. R. & Sinden, R. R. Measurement of unrestrained negative supercoiling and topological domain size in living human cells. Biochemistry 36, 3151–3158 (1997). (10.1021/bi962396q) / Biochemistry by PR Kramer (1997)
  40. Levchenko, V., Jackson, B. & Jackson, V. Histone release during transcription: displacement of the two H2A-H2B dimers in the nucleosome is dependent on different levels of transcription-induced positive stress. Biochemistry 44, 5357–5372 (2005). (10.1021/bi047786o) / Biochemistry by V Levchenko (2005)
  41. Kouzine, F., Sanford, S., Elisha-Feil, Z. & Levens, D. The functional response of upstream DNA to dynamic supercoiling in vivo. Nat. Struct. Mol. Biol. 15, 146–154 (2008). (10.1038/nsmb.1372) / Nat. Struct. Mol. Biol. by F Kouzine (2008)
  42. Dai, X., Greizerstein, M. B., Nadas-Chinni, K. & Rothman-Denes, L. B. Supercoil-induced extrusion of a regulatory DNA hairpin. Proc. Natl Acad. Sci. USA 94, 2174–2179 (1997). (10.1073/pnas.94.6.2174) / Proc. Natl Acad. Sci. USA by X Dai (1997)
  43. Sandman, K., Grayling, R. A., Dobrinski, B., Lurz, R. & Reeve, J. N. Growth-phase-dependent synthesis of histones in the archaeon Methanothermus fervidus. Proc. Natl Acad. Sci. USA 91, 12624–12628 (1994). (10.1073/pnas.91.26.12624) / Proc. Natl Acad. Sci. USA by K Sandman (1994)
  44. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). (10.1016/j.jsb.2005.07.007) / J. Struct. Biol. by DN Mastronarde (2005)
  45. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996). (10.1006/jsbi.1996.0013) / J. Struct. Biol. by JR Kremer (1996)
  46. Pettersen, E. F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (10.1002/jcc.20084) / J. Comput. Chem. by EF Pettersen (2004)
  47. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007). (10.1016/j.jsb.2006.05.009) / J. Struct. Biol. by G Tang (2007)
  48. Case, D. A. et al. AMBER 11 University of California (2010).
  49. Pérez, A. et al. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 92, 3817–3829 (2007). (10.1529/biophysj.106.097782) / Biophys. J. by A Pérez (2007)
  50. Krepl, M. et al. Reference simulations of noncanonical nucleic acids with different χ variants of the AMBER force field: quadruplex DNA, quadruplex RNA and Z-DNA. J. Chem. Theory Comput. 8, 2506–2520 (2012). (10.1021/ct300275s) / J. Chem. Theory Comput. by M Krepl (2012)
  51. Harris, S. A., Laughton, C. A. & Liverpool, T. B. Mapping the phase diagram of the writhe of DNA nanocircles using atomistic molecular dynamics simulations. Nucleic Acids Res. 36, 21–29 (2008). (10.1093/nar/gkm891) / Nucleic Acids Res. by SA Harris (2008)
  52. Tsui, V. & Case, D. A. Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers 56, 275–291 (2000). (10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E) / Biopolymers by V Tsui (2000)
  53. Rybenkov, V. V., Vologodskii, A. V. & Cozzarelli, N. R. The effect of ionic conditions on DNA helical repeat, effective diameter and free energy of supercoiling. Nucleic Acids Res. 25, 1412–1418 (1997). (10.1093/nar/25.7.1412) / Nucleic Acids Res. by VV Rybenkov (1997)
  54. Shao, J., Tanner, S. W., Thompson, N. & Cheatham, T. E. Clustering Molecular Dynamics Trajectories: 1. Characterizing the Performance of Different Clustering Algorithms. J. Chem. Theory Comput. 3, 2312–2334 (2007). (10.1021/ct700119m) / J. Chem. Theory Comput. by J Shao (2007)
  55. Annapureddy, H. V. R. & Dang, L. X. Understanding the Rates and Molecular Mechanism of Water-Exchange around Aqueous Ions Using Molecular Simulations. J. Phys. Chem. B 118, 8917–8927 (2014). (10.1021/jp502922c) / J. Phys. Chem. B by HVR Annapureddy (2014)
  56. Price, D. J. & Brooks, C. L. A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 121, 10096–10103 (2004). (10.1063/1.1808117) / J. Chem. Phys. by DJ Price (2004)
  57. Pronk, S. et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinforma. Oxf. Engl. 29, 845–854 (2013). (10.1093/bioinformatics/btt055) / Bioinforma. Oxf. Engl. by S Pronk (2013)
Dates
Type When
Created 9 years, 10 months ago (Oct. 12, 2015, 5:41 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 5:40 a.m.)
Indexed 2 days, 14 hours ago (Aug. 21, 2025, 1:38 p.m.)
Issued 9 years, 10 months ago (Oct. 12, 2015)
Published 9 years, 10 months ago (Oct. 12, 2015)
Published Online 9 years, 10 months ago (Oct. 12, 2015)
Funders 0

None

@article{Irobalieva_2015, title={Structural diversity of supercoiled DNA}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms9440}, DOI={10.1038/ncomms9440}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Irobalieva, Rossitza N. and Fogg, Jonathan M. and Catanese, Daniel J. and Sutthibutpong, Thana and Chen, Muyuan and Barker, Anna K. and Ludtke, Steven J. and Harris, Sarah A. and Schmid, Michael F. and Chiu, Wah and Zechiedrich, Lynn}, year={2015}, month=oct }