Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractEstablishing processing–structure–property relationships for monolayer materials is crucial for a range of applications spanning optics, catalysis, electronics and energy. Presently, for molybdenum disulfide, a promising catalyst for artificial photosynthesis, considerable debate surrounds the structure/property relationships of its various allotropes. Here we unambiguously solve the structure of molybdenum disulfide monolayers using high-resolution transmission electron microscopy supported by density functional theory and show lithium intercalation to direct a preferential transformation of the basal plane from 2H (trigonal prismatic) to 1T′ (clustered Mo). These changes alter the energetics of molybdenum disulfide interactions with hydrogen (ΔGH), and, with respect to catalysis, the 1T′ transformation renders the normally inert basal plane amenable towards hydrogen adsorption and hydrogen evolution. Indeed, we show basal plane activation of 1T′ molybdenum disulfide and a lowering of ΔGH from +1.6 eV for 2H to +0.18 eV for 1T′, comparable to 2H molybdenum disulfide edges on Au(111), one of the most active hydrogen evolution catalysts known.

Bibliography

Chou, S. S., Sai, N., Lu, P., Coker, E. N., Liu, S., Artyushkova, K., Luk, T. S., Kaehr, B., & Brinker, C. J. (2015). Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nature Communications, 6(1).

Authors 9
  1. Stanley S. Chou (first)
  2. Na Sai (additional)
  3. Ping Lu (additional)
  4. Eric N. Coker (additional)
  5. Sheng Liu (additional)
  6. Kateryna Artyushkova (additional)
  7. Ting S. Luk (additional)
  8. Bryan Kaehr (additional)
  9. C. Jeffrey Brinker (additional)
References 58 Referenced 302
  1. Bard, A. J. & Fox, M. A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141–145 (1995). (10.1021/ar00051a007) / Acc. Chem. Res. by AJ Bard (1995)
  2. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006). (10.1073/pnas.0603395103) / Proc. Natl Acad. Sci. USA by NS Lewis (2006)
  3. Turner, J. A. Sustainable hydrogen production. Science 305, 972–974 (2004). (10.1126/science.1103197) / Science by JA Turner (2004)
  4. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). (10.1021/cr1002326) / Chem. Rev. by MG Walter (2010)
  5. Colbeau, A. & Vignais, P. M. The membrane-bound hydrogenase of Rhodopseudomonas capsulata: Stability and catalytic properties. Biochim. Biophys. Acta Enzymol. 662, 271–284 (1981). (10.1016/0005-2744(81)90039-5) / Biochim. Biophys. Acta Enzymol. by A Colbeau (1981)
  6. Conway, B. E. & Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571–3594 (2002). (10.1016/S0013-4686(02)00329-8) / Electrochim. Acta by BE Conway (2002)
  7. Tafel, J. Ueber strychnin. Justus Liebigs Annalen der Chemie. 301, 285–348 (1898). (10.1002/jlac.18983010207) / Justus Liebigs Annalen der Chemie. by J Tafel (1898)
  8. Tafel, J. & Naumann, K. Die elektrolytische Reduction des Strychnis und Brucins. Berichte der deutschen chemischen. Gesellschaft. 34, 3291–3299 (1901). (10.1002/cber.19010340311) / Berichte der deutschen chemischen. Gesellschaft. by J Tafel (1901)
  9. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007). (10.1126/science.1141483) / Science by TF Jaramillo (2007)
  10. Bonde, J., Moses, P. G., Jaramillo, T. F., Norskov, J. K. & Chorkendorff, I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 140, 219–231 (2009). (10.1039/B803857K) / Faraday Discuss. by J Bonde (2009)
  11. Raybaud, P., Hafner, J., Kresse, G., Kasztelan, S. & Toulhoat, H. Ab initio study of the H2–H2S/MoS2 gas-solid interface: the nature of the catalytically active sites. J. Catal. 189, 129–146 (2000). (10.1006/jcat.1999.2698) / J. Catal. by P Raybaud (2000)
  12. Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005). (10.1021/ja0504690) / J. Am. Chem. Soc. by B Hinnemann (2005)
  13. Kong, D. et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013). (10.1021/nl400258t) / Nano Lett. by D Kong (2013)
  14. Karunadasa, H. I. et al. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012). (10.1126/science.1215868) / Science by HI Karunadasa (2012)
  15. Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012). (10.1038/nmat3439) / Nat. Mater. by J Kibsgaard (2012)
  16. Kibsgaard, J., Jaramillo, T. F. & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters. Nat. Chem. 6, 248–253 (2014). (10.1038/nchem.1853) / Nat. Chem. by J Kibsgaard (2014)
  17. Kim, J., Byun, S., Smith, A. J., Yu, J. & Huang, J. Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett. 4, 1227–1232 (2013). (10.1021/jz400507t) / J. Phys. Chem. Lett. by J Kim (2013)
  18. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013). (10.1021/ja404523s) / J. Am. Chem. Soc. by MA Lukowski (2013)
  19. Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013). (10.1021/nl403661s) / Nano Lett. by D Voiry (2013)
  20. Azizi, A. et al. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 5, 4867 (2014). (10.1038/ncomms5867) / Nat. Commun. by A Azizi (2014)
  21. Erickson, K. et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22, 4467–4472 (2010). (10.1002/adma.201000732) / Adv. Mater. by K Erickson (2010)
  22. Gómez-Navarro, C. et al. Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010). (10.1021/nl9031617) / Nano Lett. by C Gómez-Navarro (2010)
  23. Somoano, R. B., Hadek, V. & Rembaum, A. Alkali metal intercalates of molybdenum disulfide. J. Chem. Phys. 58, 697–701 (1973). (10.1063/1.1679256) / J. Chem. Phys. by RB Somoano (1973)
  24. Py, M. A. & Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 61, 76–84 (1983). (10.1139/p83-013) / Can. J. Phys. by MA Py (1983)
  25. Chrissafis, K. et al. Structural studies of MoS2 intercalated by lithium. Mater. Sci. Eng. B 3, 145–151 (1989). (10.1016/0921-5107(89)90194-3) / Mater. Sci. Eng. B by K Chrissafis (1989)
  26. Jiménez Sandoval, S., Yang, D., Frindt, R. F. & Irwin, J. C. Raman study and lattice dynamics of single molecular layers of MoS2 . Phys. Rev. B 44, 3955–3962 (1991). (10.1103/PhysRevB.44.3955) / Phys. Rev. B by S Jiménez Sandoval (1991)
  27. Qin, X. R., Yang, D., Frindt, R. F. & Irwin, J. C. Real-space imaging of single-layer MoS2 by scanning tunneling microscopy. Phys. Rev. B 44, 3490–3493 (1991). (10.1103/PhysRevB.44.3490) / Phys. Rev. B by XR Qin (1991)
  28. Schumacher, A., Scandella, L., Kruse, N. & Prins, R. Single-layer MoS2 on mica: studies by means of scanning force microscopy. Surf. Sci. 289, L595–L598 (1993). (10.1016/0039-6028(93)90875-K) / Surf. Sci. by A Schumacher (1993)
  29. Dungey, K. E., Curtis, M. D. & Penner-Hahn, J. E. Structural characterization and thermal stability of MoS2 intercalation compounds. Chem. Mater. 10, 2152–2161 (1998). (10.1021/cm980034u) / Chem. Mater. by KE Dungey (1998)
  30. Heising, J. & Kanatzidis, M. G. Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 121, 638–643 (1999). (10.1021/ja983043c) / J. Am. Chem. Soc. by J Heising (1999)
  31. Petkov, V. et al. Structure of nanocrystalline materials using atomic pair distribution function analysis: Study of LiMoS2 . Phys. Rev. B 65, 092105 (2002). (10.1103/PhysRevB.65.092105) / Phys. Rev. B by V Petkov (2002)
  32. Maitra, U. et al. Highly effective visible-light-induced H2 generation by single-layer 1T-MoS2 and a nanocomposite of few-layer 2H-MoS2 with heavily nitrogenated graphene. Angew Chem. Int. Ed. 52, 13057–13061 (2013). (10.1002/anie.201306918) / Angew Chem. Int. Ed. by U Maitra (2013)
  33. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011). (10.1021/nl201874w) / Nano Lett. by G Eda (2011)
  34. Eda, G. et al. Coherent atomic and electronic heterostructures of single-layer MoS2 . ACS Nano 6, 7311–7317 (2012). (10.1021/nn302422x) / ACS Nano by G Eda (2012)
  35. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014). (10.1038/nmat4080) / Nat. Mater. by R Kappera (2014)
  36. Asadi, M. et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 5, 4470 (2014). (10.1038/ncomms5470) / Nat. Commun. by M Asadi (2014)
  37. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013). (10.1038/nmat3700) / Nat. Mater. by D Voiry (2013)
  38. Calandra, M. Chemically exfoliated single-layer MoS2: Stability, lattice dynamics, and catalytic adsorption from first principles. Phys. Rev. B 88, 245428 (2013). (10.1103/PhysRevB.88.245428) / Phys. Rev. B by M Calandra (2013)
  39. Tung, V. C., Allen, M. J., Yang, Y. & Kaner, R. B. High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 4, 25–29 (2009). (10.1038/nnano.2008.329) / Nat. Nanotechnol. by VC Tung (2009)
  40. Tung, V. C. et al. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 9, 1949–1955 (2009). (10.1021/nl9001525) / Nano Lett. by VC Tung (2009)
  41. Tung, V. C. et al. Towards solution processed all-carbon solar cells: a perspective. Energy Environ. Sci. 5, 7810–7818 (2012). (10.1039/c2ee21587j) / Energy Environ. Sci. by VC Tung (2012)
  42. Heising, J. & Kanatzidis, M. G. Exfoliated and restacked MoS2 and WS2: Ionic or neutral species? Encapsulation and ordering of hard electropositive cations. J. Am. Chem. Soc. 121, 11720–11732 (1999). (10.1021/ja991644d) / J. Am. Chem. Soc. by J Heising (1999)
  43. Du, P., Schneider, J., Jarosz, P. & Eisenberg, R. Photocatalytic generation of hydrogen from water using a platinum(II) terpyridyl acetylide chromophore. J. Am. Chem. Soc. 128, 7726–7727 (2006). (10.1021/ja0610683) / J. Am. Chem. Soc. by P Du (2006)
  44. Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009). (10.1021/ar900253e) / Acc. Chem. Res. by JL Dempsey (2009)
  45. Min, S. & Lu, G. Enhanced electron transfer from the excited Eosin Y to mpg-C3N4 for highly efficient hydrogen evolution under 550 nm irradiation. J. Phys. Chem. C 116, 19644–19652 (2012). (10.1021/jp304022f) / J. Phys. Chem. C by S Min (2012)
  46. Min, S. & Lu, G. Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets—the role of graphene. J. Phys. Chem. C 116, 25415–25424 (2012). (10.1021/jp3093786) / J. Phys. Chem. C by S Min (2012)
  47. Lazarides, T. et al. Making hydrogen from water using a homogeneous system without noble metals. J. Am. Chem. Soc. 131, 9192–9194 (2009). (10.1021/ja903044n) / J. Am. Chem. Soc. by T Lazarides (2009)
  48. Schneemeyer, L. F. & Wrighton, M. S. Flat-band potential of n-type semiconducting molybdenum disulfide by cyclic voltammetry of two-electron reductants: interface energetics and the sustained photooxidation of chloride. J. Am. Chem. Soc. 101, 6496–6500 (1979). (10.1021/ja00516a002) / J. Am. Chem. Soc. by LF Schneemeyer (1979)
  49. Min, S. & Lu, G. Dye-sensitized reduced graphene oxide photocatalysts for highly efficient visible-light-driven water reduction. J. Am. Chem. Soc. 115, 13938–13945 (2011). / J. Am. Chem. Soc. by S Min (2011)
  50. Valeur, B. Molecular Fluorescence: Principles and Applications WILEY-VCH (2001). (10.1002/3527600248)
  51. Tsai, C., Abild-Pedersen, F. & Nørskov, J. K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 14, 1381–1387 (2014). (10.1021/nl404444k) / Nano Lett. by C Tsai (2014)
  52. Sanchez, V. C., Jachak, A., Hurt, R. H. & Kane, A. B. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25, 15–34 (2011). (10.1021/tx200339h) / Chem. Res. Toxicol. by VC Sanchez (2011)
  53. Chou, S. S. et al. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew Chem. Int. Ed. 52, 4160–4164 (2013). (10.1002/anie.201209229) / Angew Chem. Int. Ed. by SS Chou (2013)
  54. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (10.1103/PhysRevB.54.11169) / Phys. Rev. B by G Kresse (1996)
  55. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). (10.1103/PhysRevB.50.17953) / Phys. Rev. B by PE Blöchl (1994)
  56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (10.1103/PhysRevLett.77.3865) / Phys. Rev. Lett. by JP Perdew (1996)
  57. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). (10.1063/1.1564060) / J. Chem. Phys. by J Heyd (2003)
  58. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23–J26 (2005). (10.1149/1.1856988) / J. Electrochem. Soc. by JK Nørskov (2005)
Dates
Type When
Created 9 years, 10 months ago (Oct. 7, 2015, 6:14 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 5:48 a.m.)
Indexed 13 hours, 27 minutes ago (Aug. 27, 2025, 11:45 a.m.)
Issued 9 years, 10 months ago (Oct. 7, 2015)
Published 9 years, 10 months ago (Oct. 7, 2015)
Published Online 9 years, 10 months ago (Oct. 7, 2015)
Funders 0

None

@article{Chou_2015, title={Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms9311}, DOI={10.1038/ncomms9311}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Chou, Stanley S. and Sai, Na and Lu, Ping and Coker, Eric N. and Liu, Sheng and Artyushkova, Kateryna and Luk, Ting S. and Kaehr, Bryan and Brinker, C. Jeffrey}, year={2015}, month=oct }