Abstract
AbstractSolid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron–phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm−2 at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability.
References
47
Referenced
1,031
-
Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).
(
10.1038/nmat2090
) / Nat. Mater. by GJ Snyder (2008) -
Zhao, L. D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014).
(
10.1038/nature13184
) / Nature by LD Zhao (2014) -
Pei, Y. Z. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011).
(
10.1038/nature09996
) / Nature by YZ Pei (2011) -
Heremans, J. P. et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008).
(
10.1126/science.1159725
) / Science by JP Heremans (2008) -
Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).
(
10.1038/nature11439
) / Nature by K Biswas (2012) -
Toberer, E. S., Zevalkink, A. & Snyder, G. J. Phonon engineering through crystal chemistry. J. Mater. Chem. 21, 15843–15852 (2011).
(
10.1039/c1jm11754h
) / J. Mater. Chem. by ES Toberer (2011) - Ioffe, A. F. Semiconductor Thermoelements and Thermoelectric Cooling Infosearch (1957).
-
Goldsmid, H. J. Introduction to Thermoelectricity Springer (2010).
(
10.1007/978-3-642-00716-3
) -
Sales, B. C., Mandrus, D. & Williams, R. K. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996).
(
10.1126/science.272.5266.1325
) / Science by BC Sales (1996) -
Tritt, T. M. Holey and unholey semiconductors. Science 283, 804–805 (1999).
(
10.1126/science.283.5403.804
) / Science by TM Tritt (1999) -
Xie, H. H. et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-Heusler thermoelectric materials. Adv. Funct. Mater. 23, 5123–5130 (2013).
(
10.1002/adfm.201300663
) / Adv. Funct. Mater. by HH Xie (2013) -
Yang, J. et al. Trends in electrical transport of p-type skutterudites RFe4Sb12 (R=Na, K, Ca, Sr, Ba, La, Ce, Pr, Yb) from first-principles calculations and Boltzmann transport theory. Phys. Rev. B 84, 235205 (2011).
(
10.1103/PhysRevB.84.235205
) / Phys. Rev. B by J Yang (2011) -
Yang, J. et al. Evaluation of half-Heusler compounds as thermoelectric materials based on the calculation electrical transport properties. Adv. Funct. Mater. 18, 2880–2888 (2008).
(
10.1002/adfm.200701369
) / Adv. Funct. Mater. by J Yang (2008) -
Yang, J., Meisner, G. P. & Chen, L. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Appl. Phys. Lett. 85, 1140–1142 (2004).
(
10.1063/1.1783022
) / Appl. Phys. Lett. by J Yang (2004) -
Pei, Y. Z. et al. Optimum carrier concentration in n-type PbTe thermoelectrics. Adv. Energy Mater. 4, 1400486 (2014).
(
10.1002/aenm.201400486
) / Adv. Energy Mater. by YZ Pei (2014) -
Wang, H., Pei, Y. Z., LaLonde, A. D. & Snyder, G. J. Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc. Natl Acad. Sci. USA 109, 9705–9709 (2012).
(
10.1073/pnas.1111419109
) / Proc. Natl Acad. Sci. USA by H Wang (2012) -
Culp, S. R. et al. Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700°C) p-type thermoelectric materials. Appl. Phys. Lett. 93, 022105 (2008).
(
10.1063/1.2959103
) / Appl. Phys. Lett. by SR Culp (2008) -
Yu, C. et al. High performance half-Heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering. Acta Mater. 57, 2757–2764 (2009).
(
10.1016/j.actamat.2009.02.026
) / Acta Mater. by C Yu (2009) -
Fu, C. G., Zhu, T. J., Liu, Y. T., Xie, H. H. & Zhao, X. B. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT>1. Energy Environ. Sci. 8, 216–220 (2015).
(
10.1039/C4EE03042G
) / Energy Environ. Sci. by CG Fu (2015) -
Schwall, M. & Balke, B. Phase separation as a key to a thermoelectric high efficiency. Phys. Chem. Chem. Phys. 15, 1868–1872 (2013).
(
10.1039/C2CP43946H
) / Phys. Chem. Chem. Phys. by M Schwall (2013) -
Chen, S. et al. Effect of Hf concentration on thermoelectric properties of nanostructured N-type half-Heusler materials HfxZr1-xNiSn0.99Sb0.01 . Adv. Energy Mater. 3, 1210–1214 (2013).
(
10.1002/aenm.201300336
) / Adv. Energy Mater. by S Chen (2013) -
Graf, T., Felser, C. & Parkin, S. S. P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011).
(
10.1016/j.progsolidstchem.2011.02.001
) / Prog. Solid State Chem. by T Graf (2011) -
Chen, S. & Ren, Z. Recent progress of half-Heusler for moderate temperature thermoelectric applications. Mater. Today 16, 387–395 (2013).
(
10.1016/j.mattod.2013.09.015
) / Mater. Today by S Chen (2013) -
Xie, W. et al. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials 2, 379–412 (2012).
(
10.3390/nano2040379
) / Nanomaterials by W Xie (2012) -
Schmitt, J., Gibbs, Z. M., Snyder, G. J. & Felser, C. Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials. Mater. Horiz. 2, 68–75 (2015).
(
10.1039/C4MH00142G
) / Mater. Horiz. by J Schmitt (2015) -
Joshi, G. et al. NbFeSb-based p-type half-Heuslers for power generation applications. Energy Environ. Sci. 7, 4070–4076 (2014).
(
10.1039/C4EE02180K
) / Energy Environ. Sci. by G Joshi (2014) -
Fu, C. G. et al. High band degeneracy contributing to high thermoelectric performance in p-type half-Heusler compounds. Adv. Energy Mater. 4, 1400600 (2014).
(
10.1002/aenm.201400600
) / Adv. Energy Mater. by CG Fu (2014) -
Bartholomé, K. et al. Thermoelectric modules based on half-Heusler materials produced in large quantities. J. Electron. Mater. 43, 1775–1781 (2014).
(
10.1007/s11664-013-2863-x
) / J. Electron. Mater. by K Bartholomé (2014) -
Mikami, M., Kobayashi, K. & Tanaka, S. Power generation performance of thermoelectric module consisting of Sb-doped Heusler Fe2VAl sintered alloy. Mater. Trans. 52, 1546–1548 (2011).
(
10.2320/matertrans.E-M2011807
) / Mater. Trans. by M Mikami (2011) -
Salvador, J. R. et al. Conversion efficiency of skutterudite-based thermoelectric modules. Phys. Chem. Chem. Phys. 16, 12510–12520 (2014).
(
10.1039/C4CP01582G
) / Phys. Chem. Chem. Phys. by JR Salvador (2014) -
Liu, X. H. et al. Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Adv. Energy Mater. 3, 1238–1244 (2013).
(
10.1002/aenm.201300174
) / Adv. Energy Mater. by XH Liu (2013) -
May, A. F., Toberer, E. S., Saramat, A. & Snyder, G. J. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16−xGe30+x . Phys. Rev. B 80, 125205 (2009).
(
10.1103/PhysRevB.80.125205
) / Phys. Rev. B by AF May (2009) -
Xie, H. H. et al. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci. Rep. 4, 6888 (2014).
(
10.1038/srep06888
) / Sci. Rep. by HH Xie (2014) -
Wang, H., LaLonde, A. D., Pei, Y. Z. & Snyder, G. J. The criteria for beneficial disorder in thermoelectric solid solutions. Adv. Funct. Mater. 23, 1586–1596 (2013).
(
10.1002/adfm.201201576
) / Adv. Funct. Mater. by H Wang (2013) -
Abeles, B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 131, 1906–1911 (1963).
(
10.1103/PhysRev.131.1906
) / Phys. Rev. by B Abeles (1963) -
Shi, X. Y., Pei, Y. Z., Snyder, G. J. & Chen, L. Optimized thermoelectric properties of Mo3Sb7-xTex with significant phonon scattering by electrons. Energy Environ. Sci. 4, 4086–4095 (2011).
(
10.1039/c1ee01406d
) / Energy Environ. Sci. by XY Shi (2011) -
Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959).
(
10.1103/PhysRev.113.1046
) / Phys. Rev. by J Callaway (1959) -
Delaire, O. et al. Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder. Proc. Natl Acad. Sci. USA 108, 4725–4730 (2011).
(
10.1073/pnas.1014869108
) / Proc. Natl Acad. Sci. USA by O Delaire (2011) -
Wang, H., Schechtel, E., Pei, Y. Z. & Snyder, G. J. High thermoelectric efficiency of n-type PbS. Adv. Energy Mater. 3, 488–495 (2013).
(
10.1002/aenm.201200683
) / Adv. Energy Mater. by H Wang (2013) -
Vining, C. B., Laskow, W., Hanson, J. O., Vanderbeck, R. R. & Gorsuch, P. D. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys. J. Appl. Phys. 69, 4333–4340 (1991).
(
10.1063/1.348408
) / J. Appl. Phys. by CB Vining (1991) -
Fu, C. G. et al. Electron and phonon transport in Co-doped FeV0.6Nb0.4Sb half-Heusler thermoelectric materials. J. Appl. Phys. 114, 134905 (2013).
(
10.1063/1.4823859
) / J. Appl. Phys. by CG Fu (2013) -
Pei, Y. Z. et al. Improving thermoelectric performance of caged compounds through light-element filling. Appl. Phys. Lett. 95, 042101 (2009).
(
10.1063/1.3182800
) / Appl. Phys. Lett. by YZ Pei (2009) -
Bux, S. K. et al. Glass-like lattice thermal conductivity and high thermoelectric efficiency in Yb9Mn4.2Sb9 . J. Mater. Chem. A 2, 215–220 (2014).
(
10.1039/C3TA14021K
) / J. Mater. Chem. A by SK Bux (2014) -
He, Y. et al. High thermoelectric performance in non-toxic earth abundant copper sulfide. Adv. Mater. 26, 3974–3978 (2014).
(
10.1002/adma.201400515
) / Adv. Mater. by Y He (2014) -
Zhu, T. J., Gao, H., Chen, Y. & Zhao, X. B. Ioffe–Regel limit and lattice thermal conductivity reduction of high performance (AgSbTe2)15(GeTe)85 thermoelectric materials. J. Mater. Chem. A 2, 3251–3256 (2014).
(
10.1039/C3TA15147F
) / J. Mater. Chem. A by TJ Zhu (2014) -
Shi, X. et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011).
(
10.1021/ja111199y
) / J. Am. Chem. Soc. by X Shi (2011) -
Brown, S. R., Kauzlarich, S. M., Gascoin, F. & Snyder, G. J. Yb14MnSb11: New high efficiency thermoelectric material for power generation. Chem. Mater. 18, 1873–1877 (2006).
(
10.1021/cm060261t
) / Chem. Mater. by SR Brown (2006)
@article{Fu_2015, title={Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms9144}, DOI={10.1038/ncomms9144}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Fu, Chenguang and Bai, Shengqiang and Liu, Yintu and Tang, Yunshan and Chen, Lidong and Zhao, Xinbing and Zhu, Tiejun}, year={2015}, month=sep }