Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractSolid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron–phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm−2 at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability.

Bibliography

Fu, C., Bai, S., Liu, Y., Tang, Y., Chen, L., Zhao, X., & Zhu, T. (2015). Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nature Communications, 6(1).

Authors 7
  1. Chenguang Fu (first)
  2. Shengqiang Bai (additional)
  3. Yintu Liu (additional)
  4. Yunshan Tang (additional)
  5. Lidong Chen (additional)
  6. Xinbing Zhao (additional)
  7. Tiejun Zhu (additional)
References 47 Referenced 1,031
  1. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008). (10.1038/nmat2090) / Nat. Mater. by GJ Snyder (2008)
  2. Zhao, L. D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014). (10.1038/nature13184) / Nature by LD Zhao (2014)
  3. Pei, Y. Z. et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011). (10.1038/nature09996) / Nature by YZ Pei (2011)
  4. Heremans, J. P. et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–557 (2008). (10.1126/science.1159725) / Science by JP Heremans (2008)
  5. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012). (10.1038/nature11439) / Nature by K Biswas (2012)
  6. Toberer, E. S., Zevalkink, A. & Snyder, G. J. Phonon engineering through crystal chemistry. J. Mater. Chem. 21, 15843–15852 (2011). (10.1039/c1jm11754h) / J. Mater. Chem. by ES Toberer (2011)
  7. Ioffe, A. F. Semiconductor Thermoelements and Thermoelectric Cooling Infosearch (1957).
  8. Goldsmid, H. J. Introduction to Thermoelectricity Springer (2010). (10.1007/978-3-642-00716-3)
  9. Sales, B. C., Mandrus, D. & Williams, R. K. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996). (10.1126/science.272.5266.1325) / Science by BC Sales (1996)
  10. Tritt, T. M. Holey and unholey semiconductors. Science 283, 804–805 (1999). (10.1126/science.283.5403.804) / Science by TM Tritt (1999)
  11. Xie, H. H. et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-Heusler thermoelectric materials. Adv. Funct. Mater. 23, 5123–5130 (2013). (10.1002/adfm.201300663) / Adv. Funct. Mater. by HH Xie (2013)
  12. Yang, J. et al. Trends in electrical transport of p-type skutterudites RFe4Sb12 (R=Na, K, Ca, Sr, Ba, La, Ce, Pr, Yb) from first-principles calculations and Boltzmann transport theory. Phys. Rev. B 84, 235205 (2011). (10.1103/PhysRevB.84.235205) / Phys. Rev. B by J Yang (2011)
  13. Yang, J. et al. Evaluation of half-Heusler compounds as thermoelectric materials based on the calculation electrical transport properties. Adv. Funct. Mater. 18, 2880–2888 (2008). (10.1002/adfm.200701369) / Adv. Funct. Mater. by J Yang (2008)
  14. Yang, J., Meisner, G. P. & Chen, L. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Appl. Phys. Lett. 85, 1140–1142 (2004). (10.1063/1.1783022) / Appl. Phys. Lett. by J Yang (2004)
  15. Pei, Y. Z. et al. Optimum carrier concentration in n-type PbTe thermoelectrics. Adv. Energy Mater. 4, 1400486 (2014). (10.1002/aenm.201400486) / Adv. Energy Mater. by YZ Pei (2014)
  16. Wang, H., Pei, Y. Z., LaLonde, A. D. & Snyder, G. J. Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe. Proc. Natl Acad. Sci. USA 109, 9705–9709 (2012). (10.1073/pnas.1111419109) / Proc. Natl Acad. Sci. USA by H Wang (2012)
  17. Culp, S. R. et al. Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700°C) p-type thermoelectric materials. Appl. Phys. Lett. 93, 022105 (2008). (10.1063/1.2959103) / Appl. Phys. Lett. by SR Culp (2008)
  18. Yu, C. et al. High performance half-Heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering. Acta Mater. 57, 2757–2764 (2009). (10.1016/j.actamat.2009.02.026) / Acta Mater. by C Yu (2009)
  19. Fu, C. G., Zhu, T. J., Liu, Y. T., Xie, H. H. & Zhao, X. B. Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT>1. Energy Environ. Sci. 8, 216–220 (2015). (10.1039/C4EE03042G) / Energy Environ. Sci. by CG Fu (2015)
  20. Schwall, M. & Balke, B. Phase separation as a key to a thermoelectric high efficiency. Phys. Chem. Chem. Phys. 15, 1868–1872 (2013). (10.1039/C2CP43946H) / Phys. Chem. Chem. Phys. by M Schwall (2013)
  21. Chen, S. et al. Effect of Hf concentration on thermoelectric properties of nanostructured N-type half-Heusler materials HfxZr1-xNiSn0.99Sb0.01 . Adv. Energy Mater. 3, 1210–1214 (2013). (10.1002/aenm.201300336) / Adv. Energy Mater. by S Chen (2013)
  22. Graf, T., Felser, C. & Parkin, S. S. P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011). (10.1016/j.progsolidstchem.2011.02.001) / Prog. Solid State Chem. by T Graf (2011)
  23. Chen, S. & Ren, Z. Recent progress of half-Heusler for moderate temperature thermoelectric applications. Mater. Today 16, 387–395 (2013). (10.1016/j.mattod.2013.09.015) / Mater. Today by S Chen (2013)
  24. Xie, W. et al. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials 2, 379–412 (2012). (10.3390/nano2040379) / Nanomaterials by W Xie (2012)
  25. Schmitt, J., Gibbs, Z. M., Snyder, G. J. & Felser, C. Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials. Mater. Horiz. 2, 68–75 (2015). (10.1039/C4MH00142G) / Mater. Horiz. by J Schmitt (2015)
  26. Joshi, G. et al. NbFeSb-based p-type half-Heuslers for power generation applications. Energy Environ. Sci. 7, 4070–4076 (2014). (10.1039/C4EE02180K) / Energy Environ. Sci. by G Joshi (2014)
  27. Fu, C. G. et al. High band degeneracy contributing to high thermoelectric performance in p-type half-Heusler compounds. Adv. Energy Mater. 4, 1400600 (2014). (10.1002/aenm.201400600) / Adv. Energy Mater. by CG Fu (2014)
  28. Bartholomé, K. et al. Thermoelectric modules based on half-Heusler materials produced in large quantities. J. Electron. Mater. 43, 1775–1781 (2014). (10.1007/s11664-013-2863-x) / J. Electron. Mater. by K Bartholomé (2014)
  29. Mikami, M., Kobayashi, K. & Tanaka, S. Power generation performance of thermoelectric module consisting of Sb-doped Heusler Fe2VAl sintered alloy. Mater. Trans. 52, 1546–1548 (2011). (10.2320/matertrans.E-M2011807) / Mater. Trans. by M Mikami (2011)
  30. Salvador, J. R. et al. Conversion efficiency of skutterudite-based thermoelectric modules. Phys. Chem. Chem. Phys. 16, 12510–12520 (2014). (10.1039/C4CP01582G) / Phys. Chem. Chem. Phys. by JR Salvador (2014)
  31. Liu, X. H. et al. Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Adv. Energy Mater. 3, 1238–1244 (2013). (10.1002/aenm.201300174) / Adv. Energy Mater. by XH Liu (2013)
  32. May, A. F., Toberer, E. S., Saramat, A. & Snyder, G. J. Characterization and analysis of thermoelectric transport in n-type Ba8Ga16−xGe30+x . Phys. Rev. B 80, 125205 (2009). (10.1103/PhysRevB.80.125205) / Phys. Rev. B by AF May (2009)
  33. Xie, H. H. et al. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci. Rep. 4, 6888 (2014). (10.1038/srep06888) / Sci. Rep. by HH Xie (2014)
  34. Wang, H., LaLonde, A. D., Pei, Y. Z. & Snyder, G. J. The criteria for beneficial disorder in thermoelectric solid solutions. Adv. Funct. Mater. 23, 1586–1596 (2013). (10.1002/adfm.201201576) / Adv. Funct. Mater. by H Wang (2013)
  35. Abeles, B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 131, 1906–1911 (1963). (10.1103/PhysRev.131.1906) / Phys. Rev. by B Abeles (1963)
  36. Shi, X. Y., Pei, Y. Z., Snyder, G. J. & Chen, L. Optimized thermoelectric properties of Mo3Sb7-xTex with significant phonon scattering by electrons. Energy Environ. Sci. 4, 4086–4095 (2011). (10.1039/c1ee01406d) / Energy Environ. Sci. by XY Shi (2011)
  37. Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959). (10.1103/PhysRev.113.1046) / Phys. Rev. by J Callaway (1959)
  38. Delaire, O. et al. Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder. Proc. Natl Acad. Sci. USA 108, 4725–4730 (2011). (10.1073/pnas.1014869108) / Proc. Natl Acad. Sci. USA by O Delaire (2011)
  39. Wang, H., Schechtel, E., Pei, Y. Z. & Snyder, G. J. High thermoelectric efficiency of n-type PbS. Adv. Energy Mater. 3, 488–495 (2013). (10.1002/aenm.201200683) / Adv. Energy Mater. by H Wang (2013)
  40. Vining, C. B., Laskow, W., Hanson, J. O., Vanderbeck, R. R. & Gorsuch, P. D. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys. J. Appl. Phys. 69, 4333–4340 (1991). (10.1063/1.348408) / J. Appl. Phys. by CB Vining (1991)
  41. Fu, C. G. et al. Electron and phonon transport in Co-doped FeV0.6Nb0.4Sb half-Heusler thermoelectric materials. J. Appl. Phys. 114, 134905 (2013). (10.1063/1.4823859) / J. Appl. Phys. by CG Fu (2013)
  42. Pei, Y. Z. et al. Improving thermoelectric performance of caged compounds through light-element filling. Appl. Phys. Lett. 95, 042101 (2009). (10.1063/1.3182800) / Appl. Phys. Lett. by YZ Pei (2009)
  43. Bux, S. K. et al. Glass-like lattice thermal conductivity and high thermoelectric efficiency in Yb9Mn4.2Sb9 . J. Mater. Chem. A 2, 215–220 (2014). (10.1039/C3TA14021K) / J. Mater. Chem. A by SK Bux (2014)
  44. He, Y. et al. High thermoelectric performance in non-toxic earth abundant copper sulfide. Adv. Mater. 26, 3974–3978 (2014). (10.1002/adma.201400515) / Adv. Mater. by Y He (2014)
  45. Zhu, T. J., Gao, H., Chen, Y. & Zhao, X. B. Ioffe–Regel limit and lattice thermal conductivity reduction of high performance (AgSbTe2)15(GeTe)85 thermoelectric materials. J. Mater. Chem. A 2, 3251–3256 (2014). (10.1039/C3TA15147F) / J. Mater. Chem. A by TJ Zhu (2014)
  46. Shi, X. et al. Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011). (10.1021/ja111199y) / J. Am. Chem. Soc. by X Shi (2011)
  47. Brown, S. R., Kauzlarich, S. M., Gascoin, F. & Snyder, G. J. Yb14MnSb11: New high efficiency thermoelectric material for power generation. Chem. Mater. 18, 1873–1877 (2006). (10.1021/cm060261t) / Chem. Mater. by SR Brown (2006)
Dates
Type When
Created 10 years ago (Sept. 2, 2015, 5:24 a.m.)
Deposited 2 years, 8 months ago (Jan. 5, 2023, 5:52 a.m.)
Indexed 9 minutes ago (Sept. 6, 2025, 11:53 a.m.)
Issued 10 years ago (Sept. 2, 2015)
Published 10 years ago (Sept. 2, 2015)
Published Online 10 years ago (Sept. 2, 2015)
Funders 0

None

@article{Fu_2015, title={Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms9144}, DOI={10.1038/ncomms9144}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Fu, Chenguang and Bai, Shengqiang and Liu, Yintu and Tang, Yunshan and Chen, Lidong and Zhao, Xinbing and Zhu, Tiejun}, year={2015}, month=sep }