Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractAlloy-type anodes such as silicon and tin are gaining popularity in rechargeable Li-ion batteries, but their rate/cycling capabilities should be improved. Here by making yolk-shell nanocomposite of aluminium core (30 nm in diameter) and TiO2 shell (∼3 nm in thickness), with a tunable interspace, we achieve 10 C charge/discharge rate with reversible capacity exceeding 650 mAh g−1 after 500 cycles, with a 3 mg cm−2 loading. At 1 C, the capacity is approximately 1,200 mAh g−1 after 500 cycles. Our one-pot synthesis route is simple and industrially scalable. This result may reverse the lagging status of aluminium among high-theoretical-capacity anodes.

Bibliography

Li, S., Niu, J., Zhao, Y. C., So, K. P., Wang, C., Wang, C. A., & Li, J. (2015). RETRACTED ARTICLE: High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity. Nature Communications, 6(1).

Authors 7
  1. Sa Li (first)
  2. Junjie Niu (additional)
  3. Yu Cheng Zhao (additional)
  4. Kang Pyo So (additional)
  5. Chao Wang (additional)
  6. Chang An Wang (additional)
  7. Ju Li (additional)
References 26 Referenced 194
  1. Gay, E. C., Vissers, D. R., Martino, F. J. & Anderson, K. E. Performance-characteristics of solid lithium-aluminum alloy electrodes. J. Electrochem. Soc. 123, 1591–1596 (1976). (10.1149/1.2132652) / J. Electrochem. Soc. by EC Gay (1976)
  2. Wen, C. J., Boukamp, B. A., Huggins, R. A. & Weppner, W. Thermodynamic and mass-transport properties of lial. J. Electrochem. Soc. 126, 2258–2266 (1979). (10.1149/1.2128939) / J. Electrochem. Soc. by CJ Wen (1979)
  3. Nitta, N. & Yushin, G. High-capacity anode materials for lithium- ion batteries: choice of elements and structures for active particles. Part. Part. Syst. Char. 31, 317–336 (2014). (10.1002/ppsc.201300231) / Part. Part. Syst. Char. by N Nitta (2014)
  4. Park, J. H. et al. Al-C hybrid nanoclustered anodes for lithium ion batteries with high electrical capacity and cyclic stability. Chem. Commun. 50, 2837–2840 (2014). (10.1039/C3CC47900E) / Chem. Commun. by JH Park (2014)
  5. Liu, Y. et al. In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation-delithiation cycles. Nano. Lett. 11, 4188–4194 (2011). (10.1021/nl202088h) / Nano. Lett. by Y Liu (2011)
  6. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mat. 22, 587–603 (2010). (10.1021/cm901452z) / Chem. Mat. by JB Goodenough (2010)
  7. Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014). (10.1038/nnano.2014.6) / Nat. Nanotechnol. by N Liu (2014)
  8. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010). (10.1126/science.1195628) / Science by JY Huang (2010)
  9. Wu, H. et al. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano. Lett. 12, 904–909 (2012). (10.1021/nl203967r) / Nano. Lett. by H Wu (2012)
  10. Chen, S. et al. Silicon core–hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. Phys. Chem. Chem. Phys. 14, 12741–12745 (2012). (10.1039/c2cp42231j) / Phys. Chem. Chem. Phys. by S Chen (2012)
  11. Luo, J. et al. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 3, 1824–1829 (2012). (10.1021/jz3006892) / J. Phys. Chem. Lett. by J Luo (2012)
  12. Liu, N. et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano. Lett. 12, 3315–3321 (2012). (10.1021/nl3014814) / Nano. Lett. by N Liu (2012)
  13. Seh, Z. W. et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013). (10.1038/ncomms2327) / Nat. Commun. by ZW Seh (2013)
  14. Sushko, M. L., Rosso, K. M. & Liu, J. Size effects on Li+/electron conductivity in TiO2 nanoparticles. J. Phys. Chem. Lett. 1, 1967–1972 (2010). (10.1021/jz100520c) / J. Phys. Chem. Lett. by ML Sushko (2010)
  15. Sushko, M. L., Rosso, K. M. & Liu, J. Mechanism of Li+/electron conductivity in rutile and anatase TiO2 nanoparticles. J. Phys. Chem. C. 114, 20277–20283 (2010). (10.1021/jp107982c) / J. Phys. Chem. C. by ML Sushko (2010)
  16. Gao, H. J., Ji, B. H., Jager, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003). (10.1073/pnas.0631609100) / Proc. Natl Acad. Sci. USA by HJ Gao (2003)
  17. Woodford, W. H., Chiang, Y. M. & Carter, W. C. "Electrochemical Shock" of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. 157, A1052–A1059 (2010). (10.1149/1.3464773) / J. Electrochem. Soc. by WH Woodford (2010)
  18. Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010). (10.1016/j.pmatsci.2010.04.001) / Prog. Mater. Sci. by T Zhu (2010)
  19. Liu, X. H. et al. In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2, 722–741 (2012). (10.1002/aenm.201200024) / Adv. Energy Mater. by XH Liu (2012)
  20. Park, Y. et al. Si‐encapsulating hollow carbon electrodes via electroless etching for lithium‐ion batteries. Adv. Energy Mater. 3, 206–212 (2013). (10.1002/aenm.201200389) / Adv. Energy Mater. by Y Park (2013)
  21. He, Y., Yu, X. Q., Wang, Y. H., Li, H. & Huang, X. J. Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency. Adv. Mater. 23, 4938–4941 (2011). (10.1002/adma.201102568) / Adv. Mater. by Y He (2011)
  22. Au, M. et al. Free standing aluminum nanostructures as anodes for Li-ion rechargeable batteries. J. Power Sources 195, 3333–3337 (2010). (10.1016/j.jpowsour.2009.11.102) / J. Power Sources by M Au (2010)
  23. Zhong, L., Wang, J., Sheng, H., Zhang, Z. & Mao, S. X. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177–180 (2014). (10.1038/nature13617) / Nature by L Zhong (2014)
  24. Limthongkul, P., Jang, Y. I., Dudney, N. J. & Chiang, Y. M. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta. Mater. 51, 1103–1113 (2003). (10.1016/S1359-6454(02)00514-1) / Acta. Mater. by P Limthongkul (2003)
  25. He, K. et al. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials. Nano. Lett. 15, 1437–1444 (2015). (10.1021/nl5049884) / Nano. Lett. by K He (2015)
  26. Zhang, L., Zhang, Z.-C. & Amine, K. in Lithium Ion Batteries - New Developments ed. Belharouak Ilias InTech (2012).
Dates
Type When
Created 10 years ago (Aug. 5, 2015, 5:43 a.m.)
Deposited 1 year, 9 months ago (Nov. 15, 2023, 10:26 a.m.)
Indexed 1 month, 1 week ago (July 19, 2025, 11:45 p.m.)
Issued 10 years ago (Aug. 5, 2015)
Published 10 years ago (Aug. 5, 2015)
Published Online 10 years ago (Aug. 5, 2015)
Funders 0

None

@article{Li_2015, title={RETRACTED ARTICLE: High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms8872}, DOI={10.1038/ncomms8872}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Li, Sa and Niu, Junjie and Zhao, Yu Cheng and So, Kang Pyo and Wang, Chao and Wang, Chang An and Li, Ju}, year={2015}, month=aug }