Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractRecent work has demonstrated excellent p-type field-effect switching in exfoliated black phosphorus, but type control has remained elusive. Here, we report unipolar n-type black phosphorus transistors with switching polarity control via contact-metal engineering and flake thickness, combined with oxygen and moisture-free fabrication. With aluminium contacts to black phosphorus, a unipolar to ambipolar transition occurs as flake thickness increases from 3 to 13 nm. The 13-nm aluminium-contacted flake displays graphene-like symmetric hole and electron mobilities up to 950 cm2 V−1 s−1 at 300 K, while a 3 nm flake displays unipolar n-type switching with on/off ratios greater than 105 (107) and electron mobility of 275 (630) cm2 V−1 s−1 at 300 K (80 K). For palladium contacts, p-type behaviour dominates in thick flakes, while 2.5–7 nm flakes have symmetric ambipolar transport. These results demonstrate a leap in n-type performance and exemplify the logical switching capabilities of black phosphorus.

Authors 4
  1. David J. Perello (first)
  2. Sang Hoon Chae (additional)
  3. Seunghyun Song (additional)
  4. Young Hee Lee (additional)
References 35 Referenced 235
  1. Narita, S. et al. Far-infrared cyclotron resonance absorptions in black phosphorus single crystals. J. Phys. Soc. Jpn. 52, 3544–3553 (1983). (10.1143/JPSJ.52.3544) / J. Phys. Soc. Jpn. by S Narita (1983)
  2. Rudenko, A. N. & Katsnel’son, M. I. Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Phys. Rev. B 89, 201408 (2014). (10.1103/PhysRevB.89.201408) / Phys. Rev. B by AN Rudenko (2014)
  3. Cai, Y., Zhang, G. & Zhang, Y.-W. Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 6677 (2014). (10.1038/srep06677) / Sci. Rep. by Y Cai (2014)
  4. Guan, J., Zhu, Z. & Tománek, D. Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys. Rev. Lett. 113, 046804 (2014). (10.1103/PhysRevLett.113.046804) / Phys. Rev. Lett. by J Guan (2014)
  5. Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014). (10.1103/PhysRevB.89.235319) / Phys. Rev. B by V Tran (2014)
  6. Liang, L. et al. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 14, 6400–6406 (2014). (10.1021/nl502892t) / Nano Lett. by L Liang (2014)
  7. Asahina, H., Shindo, K. & Morita, A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J. Phys. Soc. Jpn. 51, 1193–1199 (1982). (10.1143/JPSJ.51.1193) / J. Phys. Soc. Jpn. by H Asahina (1982)
  8. Du, Y., Liu, H., Deng, Y. & Ye, P. D. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8, 10035–10042 (2014). (10.1021/nn502553m) / ACS Nano by Y Du (2014)
  9. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014). (10.1021/nn501226z) / ACS Nano by H Liu (2014)
  10. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nano 9, 372–377 (2014). (10.1038/nnano.2014.35) / Nat. Nano by L Li (2014)
  11. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). (10.1038/ncomms5458) / Nat. Commun. by F Xia (2014)
  12. Nathaniel, G. et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2, 011001 (2015). / 2D Mater. by G Nathaniel (2015)
  13. Cao, Y. et al. Quality heterostructures from two dimensional crystals unstable in air by their assembly in inert atmosphere. Preprint at http://arxiv.org/abs/1502.03755 (2015).
  14. Chen, X. et al. High quality sandwiched black phosphorus heterostructure and its quantum oscillations. Preprint at http://arxiv.org/abs/1412.1357 (2014).
  15. Wang, H. et al. Black phosphorus radio-frequency transistors. Nano Lett. 14, 6424–6429 (2014). (10.1021/nl5029717) / Nano Lett. by H Wang (2014)
  16. Island, J. O. et al. Environmental instability of few-layer black phosphorus. 2D Mater. 2, 011002 (2015). (10.1088/2053-1583/2/1/011002) / 2D Mater. by JO Island (2015)
  17. Doganov, R. et al. Accessing the transport properties of pristine few-layer black phosphorus by van der Waals passivation in inert atmosphere. Preprint at http://arxiv.org/abs/1412.1274 (2014). (10.1038/ncomms7647)
  18. Wood, J. D. et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014). (10.1021/nl5032293) / Nano Lett. by JD Wood (2014)
  19. Andres, C.-G. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014). (10.1088/2053-1583/1/2/025001) / 2D Mater. by C-G Andres (2014)
  20. Koenig, S. P., Doganov, R. A., Schmidt, H., Castro Neto, A. H. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014). (10.1063/1.4868132) / Appl. Phys. Lett. by SP Koenig (2014)
  21. Favron, A. et al. Exfoliating pristine black phosphorus down to the monolayer: photo-oxidation and electronic confinement effects. Preprint at http://arxiv.org/abs/1408.0345 (2014).
  22. Matlow, S. L. & Ralph, E. L. Ohmic aluminum‐n‐type silicon contact. J. Appl. Phys. 30, 541–543 (1959). (10.1063/1.1702400) / J. Appl. Phys. by SL Matlow (1959)
  23. Das, S. et al. Tunable transport gap in phosphorene. Nano Lett. 14, 5733–5739 (2014). (10.1021/nl5025535) / Nano Lett. by S Das (2014)
  24. Kamalakar, M. V. et al. Low Schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. Small 11, 2209–2216 (2015). (10.1002/smll.201402900) / Small by MV Kamalakar (2015)
  25. Das, S. & Appenzeller, J. Screening and interlayer coupling in multilayer MoS2 . Phys. Status Solidi RRL 7, 268–273 (2013). (10.1002/pssr.201307015) / Phys. Status Solidi RRL by S Das (2013)
  26. Rydberg, H. et al. Van der Waals density functional for layered structures. Phys. Rev. Lett. 91, 126402 (2003). (10.1103/PhysRevLett.91.126402) / Phys. Rev. Lett. by H Rydberg (2003)
  27. McKenzie, R. H. & Moses, P. Incoherent interlayer transport and angular-dependent magnetoresistance oscillations in layered metals. Phys. Rev. Lett. 81, 4492–4495 (1998). (10.1103/PhysRevLett.81.4492) / Phys. Rev. Lett. by RH McKenzie (1998)
  28. Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014). (10.1038/ncomms5475) / Nat. Commun. by J Qiao (2014)
  29. Li, L. et al. Quantum oscillations in black phosphorus two-dimensional electron gas. Preprint at http://arxiv.org/abs/1411.6572 (2014).
  30. Perello, D. J. et al. Anomalous schottky barriers and contact band-to-band tunneling in carbon nanotube transistors. ACS Nano 4, 3103–3108 (2010). (10.1021/nn100328a) / ACS Nano by DJ Perello (2010)
  31. Zhang, Z. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 7, 3603–3607 (2007). (10.1021/nl0717107) / Nano Lett. by Z Zhang (2007)
  32. Das, S., Demarteau, M. & Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 8, 11730–11738 (2014). (10.1021/nn505868h) / ACS Nano by S Das (2014)
  33. Okamoto, H. The P-Pd (phosphorus-palladium) system. J. Phase Equilib. 15, 58–61 (1994). (10.1007/BF02667684) / J. Phase Equilib. by H Okamoto (1994)
  34. Ong, Z.-Y. & Fischetti, M. V. Mobility enhancement and temperature dependence in top-gated single-layer MoS2 . Phys. Rev. B 88, 165316 (2013). (10.1103/PhysRevB.88.165316) / Phys. Rev. B by Z-Y Ong (2013)
  35. Han, L. et al. The effect of dielectric capping on few-layer phosphorene transistors: tuning the Schottky barrier heights. IEEE Electr. Device Lett. 35, 795–797 (2014). (10.1109/LED.2014.2323951) / IEEE Electr. Device Lett. by L Han (2014)
Dates
Type When
Created 10 years ago (July 30, 2015, 6:15 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 6:10 a.m.)
Indexed 1 day, 5 hours ago (Aug. 26, 2025, 3:16 a.m.)
Issued 10 years ago (July 30, 2015)
Published 10 years ago (July 30, 2015)
Published Online 10 years ago (July 30, 2015)
Funders 0

None

@article{Perello_2015, title={High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms8809}, DOI={10.1038/ncomms8809}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Perello, David J. and Chae, Sang Hoon and Song, Seunghyun and Lee, Young Hee}, year={2015}, month=jul }