Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractRefractory high-entropy alloys (HEAs) are a class of emerging multi-component alloys, showing superior mechanical properties at elevated temperatures and being technologically interesting. However, they are generally brittle at room temperature, fail by cracking at low compressive strains and suffer from limited formability. Here we report a strategy for the fabrication of refractory HEA thin films and small-sized pillars that consist of strongly textured, columnar and nanometre-sized grains. Such HEA pillars exhibit extraordinarily high yield strengths of ∼10 GPa—among the highest reported strengths in micro-/nano-pillar compression and one order of magnitude higher than that of its bulk form—and their ductility is considerably improved (compressive plastic strains over 30%). Additionally, we demonstrate that such HEA films show substantially enhanced stability for high-temperature, long-duration conditions (at 1,100 °C for 3 days). Small-scale HEAs combining these properties represent a new class of materials in small-dimension devices potentially for high-stress and high-temperature applications.

Bibliography

Zou, Y., Ma, H., & Spolenak, R. (2015). Ultrastrong ductile and stable high-entropy alloys at small scales. Nature Communications, 6(1).

Authors 3
  1. Yu Zou (first)
  2. Huan Ma (additional)
  3. Ralph Spolenak (additional)
References 45 Referenced 523
  1. Lu, K., Lu, L. & Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009). (10.1126/science.1159610) / Science by K Lu (2009)
  2. Chookajorn, T., Murdoch, H. A. & Schuh, C. A. Design of stable nanocrystalline alloys. Science 337, 951–954 (2012). (10.1126/science.1224737) / Science by T Chookajorn (2012)
  3. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011). (10.1038/nmat3115) / Nat. Mater. by RO Ritchie (2011)
  4. Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004). (10.1002/adem.200300567) / Adv. Eng. Mater. by JW Yeh (2004)
  5. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004). (10.1016/j.msea.2003.10.257) / Mater. Sci. Eng. A by B Cantor (2004)
  6. Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014). (10.1126/science.1254581) / Science by B Gludovatz (2014)
  7. Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014). (10.1016/j.pmatsci.2013.10.001) / Prog. Mater. Sci. by Y Zhang (2014)
  8. Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P. & Liaw, P. K. Refractory high-entropy alloys. Intermetallics 18, 1758–1765 (2010). (10.1016/j.intermet.2010.05.014) / Intermetallics by ON Senkov (2010)
  9. Senkov, O. N., Wilks, G. B., Scott, J. M. & Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011). (10.1016/j.intermet.2011.01.004) / Intermetallics by ON Senkov (2011)
  10. Senkov, O. N., Senkova, S. V. & Woodward, C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214–228 (2014). (10.1016/j.actamat.2014.01.029) / Acta Mater. by ON Senkov (2014)
  11. Zou, Y., Maiti, S., Steurer, W. & Spolenak, R. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85–97 (2014). (10.1016/j.actamat.2013.11.049) / Acta Mater. by Y Zou (2014)
  12. Arzt, E. Overview no. 130 - Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 46, 5611–5626 (1998). (10.1016/S1359-6454(98)00231-6) / Acta Mater. by E Arzt (1998)
  13. Greer, J. R. & De Hosson, J. T. M. Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654–724 (2011). (10.1016/j.pmatsci.2011.01.005) / Prog. Mater. Sci. by JR Greer (2011)
  14. Ostlund, F. et al. Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Funct. Mater. 19, 2439–2444 (2009). (10.1002/adfm.200900418) / Adv. Funct. Mater. by F Ostlund (2009)
  15. Jang, D. C. & Greer, J. R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9, 215–219 (2010). (10.1038/nmat2622) / Nat. Mater. by DC Jang (2010)
  16. Lai, A., Du, Z. H., Gan, C. L. & Schuh, C. A. Shape memory and superelastic ceramics at small scales. Science 341, 1505–1508 (2013). (10.1126/science.1239745) / Science by A Lai (2013)
  17. Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004). (10.1126/science.1098993) / Science by MD Uchic (2004)
  18. Volkert, C. A. & Lilleodden, E. T. Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567–5579 (2006). (10.1080/14786430600567739) / Philos. Mag. by CA Volkert (2006)
  19. Frick, C. P., Clark, B. G., Orso, S., Schneider, A. S. & Arzt, E. Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng. A 489, 319–329 (2008). (10.1016/j.msea.2007.12.038) / Mater. Sci. Eng. A by CP Frick (2008)
  20. Schneider, A. S. et al. Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 103, (2009). (10.1103/PhysRevLett.103.105501)
  21. Kim, J.-Y., Jang, D. & Greer, J. R. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 58, 2355–2363 (2010). (10.1016/j.actamat.2009.12.022) / Acta Mater. by J-Y Kim (2010)
  22. Okamoto, N. L., Kashioka, D., Hirato, T. & Inui, H. Specimen- and grain-size dependence of compression deformation behavior in nanocrystalline copper. Int. J. Plasticity 56, 173–183 (2014). (10.1016/j.ijplas.2013.12.003) / Int. J. Plasticity by NL Okamoto (2014)
  23. Rinaldi, A., Peralta, P., Friesen, C. & Sieradzki, K. Sample-size effects in the yield behavior of nanocrystalline nickel. Acta Mater. 56, 511–517 (2008). (10.1016/j.actamat.2007.09.044) / Acta Mater. by A Rinaldi (2008)
  24. Jang, D. & Greer, J. R. Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scr. Mater. 64, 77–80 (2011). (10.1016/j.scriptamat.2010.09.010) / Scr. Mater. by D Jang (2011)
  25. Mara, N. A., Bhattacharyya, D., Dickerson, P., Hoagland, R. G. & Misra, A. Deformability of ultrahigh strength 5nmCu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008). (10.1063/1.2938921) / Appl. Phys. Lett. by NA Mara (2008)
  26. Weissmüller, J. Alloy effects in nanostructures. Nanostruct. Mater. 3, 261–272 (1993). (10.1016/0965-9773(93)90088-S) / Nanostruct. Mater. by J Weissmüller (1993)
  27. Kirchheim, R. Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413–419 (2002). (10.1016/S1359-6454(01)00338-X) / Acta Mater. by R Kirchheim (2002)
  28. Liu, X. C., Zhang, H. W. & Lu, K. Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342, 337–340 (2013). (10.1126/science.1242578) / Science by XC Liu (2013)
  29. Smidt, F. Use of ion beam assisted deposition to modify the microstructure and properties of thin films. Int. Mater. Rev. 35, 61–128 (1990). (10.1179/095066090790323975) / Int. Mater. Rev. by F Smidt (1990)
  30. Zhang, J. Y., Cui, J. C., Liu, G. & Sun, J. Deformation crossover in nanocrystalline Zr micropillars: the strongest external size. Scr. Mater. 68, 639–642 (2013). (10.1016/j.scriptamat.2012.12.024) / Scr. Mater. by JY Zhang (2013)
  31. Wheeler, J., Niederberger, C., Tessarek, C., Christiansen, S. & Michler, J. Extraction of plasticity parameters of GaN with high temperature, in situ micro-compression. Int. J. Plasticity 40, 140–151 (2013). (10.1016/j.ijplas.2012.08.001) / Int. J. Plasticity by J Wheeler (2013)
  32. Liu, S., Raghavan, R., Zeng, X. T., Michler, J. & Clegg, W. J. Compressive deformation and failure of CrAlN/Si3N4 nanocomposite coatings. Appl. Phys. Lett. 104, 081919 (2014). (10.1063/1.4867017) / Appl. Phys. Lett. by S Liu (2014)
  33. Bei, H. et al. Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scr. Mater. 57, 397–400 (2007). (10.1016/j.scriptamat.2007.05.010) / Scr. Mater. by H Bei (2007)
  34. Starliper, A. G. & Kenworthy, H. Tungsten whiskers by vapor-phase growth. Electrodepos. Surf. Treat. 2, 249–262 (1974). (10.1016/0300-9416(74)90001-7) / Electrodepos. Surf. Treat. by AG Starliper (1974)
  35. Parthasarathy, T. A., Rao, S. I., Dimiduk, D. M., Uchic, M. D. & Trinkle, D. R. Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56, 313–316 (2007). (10.1016/j.scriptamat.2006.09.016) / Scr. Mater. by TA Parthasarathy (2007)
  36. Lee, S. W. & Nix, W. D. Size dependence of the yield strength of fcc and bcc metallic micropillars with diameters of a few micrometers. Philos. Mag. 92, 1238–1260 (2012). (10.1080/14786435.2011.643250) / Philos. Mag. by SW Lee (2012)
  37. Maaß, R., Volkert, C. A. & Derlet, P. M. Crystal size effect in two dimensions – Influence of size and shape. Scr. Mater. 102, 27–30 (2015). (10.1016/j.scriptamat.2015.02.006) / Scr. Mater. by R Maaß (2015)
  38. Johnson, A. A. The effect of grain size on the tensile properties of high-purity molybdenum at room temperature. Philos. Mag. 4, 194–199 (1959). (10.1080/14786435908243256) / Philos. Mag. by AA Johnson (1959)
  39. Cottrell, A. H. Theory of brittle fracture in steel and similar metals. Trans. Met. Soc. AIME 212, (1958).
  40. Hirth, J. P. The influence of grain boundaries on mechanical properties. Metal Trans. 3, 3047–3067 (1972). (10.1007/BF02661312) / Metal Trans. by JP Hirth (1972)
  41. Zhou, Y. J., Zhang, Y., Wang, F. J. & Chen, G. L. Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1−x solid-solution alloys. Appl. Phys. Lett. 92, 241917 (2008). (10.1063/1.2938690) / Appl. Phys. Lett. by YJ Zhou (2008)
  42. Chen, T. K., Shun, T. T., Yeh, J. W. & Wong, M. S. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surf. Coat. Technol. 188–189, 193–200 (2004). (10.1016/j.surfcoat.2004.08.023) / Surf. Coat. Technol. by TK Chen (2004)
  43. Dolique, V., Thomann, A. L. & Brault, P. High-entropy alloys deposited by magnetron sputtering. IEEE Trans. Plasma Sci. 39, 2478–2479 (2011). (10.1109/TPS.2011.2157942) / IEEE Trans. Plasma Sci. by V Dolique (2011)
  44. Gu, X. W. et al. Size-dependent deformation of nanocrystalline Pt nanopillars. Nano Lett. 12, 6385–6392 (2012). (10.1021/nl3036993) / Nano Lett. by XW Gu (2012)
  45. Alshehri, O., Yavuz, M. & Tsui, T. Manifestation of external size reduction effects on the yield point of nanocrystalline rhodium using nanopillars approach. Acta Mater. 61, 40–50 (2013). (10.1016/j.actamat.2012.09.009) / Acta Mater. by O Alshehri (2013)
Dates
Type When
Created 10 years, 1 month ago (July 10, 2015, 6:03 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 6:15 a.m.)
Indexed 34 minutes ago (Aug. 27, 2025, 6:13 p.m.)
Issued 10 years, 1 month ago (July 10, 2015)
Published 10 years, 1 month ago (July 10, 2015)
Published Online 10 years, 1 month ago (July 10, 2015)
Funders 0

None

@article{Zou_2015, title={Ultrastrong ductile and stable high-entropy alloys at small scales}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms8748}, DOI={10.1038/ncomms8748}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Zou, Yu and Ma, Huan and Spolenak, Ralph}, year={2015}, month=jul }