Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractThe generation of sustainable and stable semiconductors for solar energy conversion by photoredox catalysis, for example, light-induced water splitting and carbon dioxide reduction, is a key challenge of modern materials chemistry. Here we present a simple synthesis of a ternary semiconductor, boron carbon nitride, and show that it can catalyse hydrogen or oxygen evolution from water as well as carbon dioxide reduction under visible light illumination. The ternary B–C–N alloy features a delocalized two-dimensional electron system with sp2 carbon incorporated in the h-BN lattice where the bandgap can be adjusted by the amount of incorporated carbon to produce unique functions. Such sustainable photocatalysts made of lightweight elements facilitate the innovative construction of photoredox cascades to utilize solar energy for chemical conversion.

Bibliography

Huang, C., Chen, C., Zhang, M., Lin, L., Ye, X., Lin, S., Antonietti, M., & Wang, X. (2015). Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nature Communications, 6(1).

Authors 8
  1. Caijin Huang (first)
  2. Cheng Chen (additional)
  3. Mingwen Zhang (additional)
  4. Lihua Lin (additional)
  5. Xinxin Ye (additional)
  6. Sen Lin (additional)
  7. Markus Antonietti (additional)
  8. Xinchen Wang (additional)
References 33 Referenced 685
  1. Jacobson, M. Z., Colella, W. G. & Golden, D. M. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 308, 1901–1905 (2005). (10.1126/science.1109157) / Science by MZ Jacobson (2005)
  2. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006). (10.1073/pnas.0603395103) / Proc. Natl Acad. Sci. USA by NS Lewis (2006)
  3. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). (10.1038/238037a0) / Nature by A Fujishima (1972)
  4. Kato, H., Asakura, K. & Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082–3089 (2003). (10.1021/ja027751g) / J. Am. Chem. Soc. by H Kato (2003)
  5. Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295–295 (2006). (10.1038/440295a) / Nature by K Maeda (2006)
  6. Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010). (10.1021/cr1001645) / Chem. Rev. by X Chen (2010)
  7. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009). (10.1039/B800489G) / Chem. Soc. Rev. by A Kudo (2009)
  8. Tada, H., Mitsui, T., Kiyonaga, T., Akita, T. & Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat. Mater. 5, 782–786 (2006). (10.1038/nmat1734) / Nat. Mater. by H Tada (2006)
  9. Liu, G., Yin, L.-C., Niu, P., Jiao, W. & Cheng, H.-M. Visible-light-responsive β-Rhombohedral boron photocatalysts. Angew. Chem. Int. Ed. 52, 6242–6245 (2013). (10.1002/anie.201302238) / Angew. Chem. Int. Ed. by G Liu (2013)
  10. Liu, G., Niu, P., Yin, L. & Cheng, H.-M. α-Sulfur crystals as a visible-light-active photocatalyst. J. Am. Chem. Soc. 134, 9070–9073 (2012). (10.1021/ja302897b) / J. Am. Chem. Soc. by G Liu (2012)
  11. Wang, F. et al. Red phosphorus: an elemental photocatalyst for hydrogen formation from water. Appl. Catal. B- Environ. 111–112, 409–414 (2012). (10.1016/j.apcatb.2011.10.028) / Appl. Catal. B- Environ. by F Wang (2012)
  12. Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). (10.1038/nmat2317) / Nat. Mater. by X Wang (2009)
  13. Liu, J. et al. Boron carbides as efficient, metal-free, visible-light-responsive photocatalysts. Angew. Chem. Int. Ed. 52, 3241–3245 (2013). (10.1002/anie.201209363) / Angew. Chem. Int. Ed. by J Liu (2013)
  14. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). (10.1126/science.1102896) / Science by KS Novoselov (2004)
  15. Chopra, N. G. et al. Boron nitride nanotubes. Science 269, 966–967 (1995). (10.1126/science.269.5226.966) / Science by NG Chopra (1995)
  16. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004). (10.1038/nmat1134) / Nat. Mater. by K Watanabe (2004)
  17. Song, L. et al. Binary and ternary atomic layers built from carbon, boron, and nitrogen. Adv. Mater. 24, 4878–4895 (2012). (10.1002/adma.201201792) / Adv. Mater. by L Song (2012)
  18. Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010). (10.1038/nmat2711) / Nat. Mater. by L Ci (2010)
  19. Lu, J. et al. Order–disorder transition in a two-dimensional boron–carbon–nitride alloy. Nat. Commun. 4, 2681 (2013). (10.1038/ncomms3681) / Nat. Commun. by J Lu (2013)
  20. Li, X., Zhao, J. & Yang, J. Semihydrogenated BN sheet: a promising visible-light driven photocatalyst for water splitting. Sci. Rep 3, 1858 (2013). (10.1038/srep01858) / Sci. Rep by X Li (2013)
  21. Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010). (10.1021/nl1022139) / Nano Lett. by L Song (2010)
  22. Wang, S. et al. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 51, 4209–4212 (2012). (10.1002/anie.201109257) / Angew. Chem. Int. Ed. by S Wang (2012)
  23. Stephan, O. et al. Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1683–1685 (1994). (10.1126/science.266.5191.1683) / Science by O Stephan (1994)
  24. Shi, Y. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134–4139 (2010). (10.1021/nl1023707) / Nano Lett. by Y Shi (2010)
  25. Lei, W., Portehault, D., Dimova, R. & Antonietti, M. Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors. J. Am. Chem. Soc. 133, 7121–7127 (2011). (10.1021/ja200838c) / J. Am. Chem. Soc. by W Lei (2011)
  26. Geick, R., Perry, C. H. & Rupprecht, G. Normal modes in hexagonal boron nitride. Phys. Rev. 146, 543–547 (1966). (10.1103/PhysRev.146.543) / Phys. Rev. by R Geick (1966)
  27. Gao, W., Alemany, L. B., Ci, L. & Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009). (10.1038/nchem.281) / Nat. Chem. by W Gao (2009)
  28. Yu, J. et al. Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano 4, 414–422 (2010). (10.1021/nn901204c) / ACS Nano by J Yu (2010)
  29. Kim, S. Y. et al. X-ray photoelectron spectroscopy and first principles calculation of BCN nanotubes. J. Am. Chem. Soc. 129, 1705–1716 (2007). (10.1021/ja067592r) / J. Am. Chem. Soc. by SY Kim (2007)
  30. Forrest, S. R. The limits to organic photovoltaic cell efficiency. MRS Bull. 30, 28–32 (2005). (10.1557/mrs2005.5) / MRS Bull. by SR Forrest (2005)
  31. Hu, Z.-A. et al. Synthesis and electrochemical characterization of mesoporous CoxNi1−x layered double hydroxides as electrode materials for supercapacitors. Electrochim. Acta 54, 2737–2741 (2009). (10.1016/j.electacta.2008.11.035) / Electrochim. Acta by Z-A Hu (2009)
  32. Wigley, T. M. L., Richels, R. & Edmonds, J. A. Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature 379, 240–243 (1996). (10.1038/379240a0) / Nature by TML Wigley (1996)
  33. Kurakevych, O. O. & Solozhenko, V. L. Rhombohedral boron subnitride, B13N2, by X-ray powder diffraction. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 63, i80–i82 (2007). (10.1107/S0108270107037353) / Acta Crystallogr. Sect. C: Cryst. Struct. Commun. by OO Kurakevych (2007)
Dates
Type When
Created 10 years, 1 month ago (July 10, 2015, 6:01 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 6:19 a.m.)
Indexed 16 hours, 23 minutes ago (Aug. 31, 2025, 7:23 p.m.)
Issued 10 years, 1 month ago (July 10, 2015)
Published 10 years, 1 month ago (July 10, 2015)
Published Online 10 years, 1 month ago (July 10, 2015)
Funders 0

None

@article{Huang_2015, title={Carbon-doped BN nanosheets for metal-free photoredox catalysis}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms8698}, DOI={10.1038/ncomms8698}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Huang, Caijin and Chen, Cheng and Zhang, Mingwen and Lin, Lihua and Ye, Xinxin and Lin, Sen and Antonietti, Markus and Wang, Xinchen}, year={2015}, month=jul }