Crossref journal-article
Springer Science and Business Media LLC
Nature Communications (297)
Abstract

AbstractGold, silver, platinum and palladium typically crystallize with the face-centred cubic structure. Here we report the high-yield solution synthesis of gold nanoribbons in the 4H hexagonal polytype, a previously unreported metastable phase of gold. These gold nanoribbons undergo a phase transition from the original 4H hexagonal to face-centred cubic structure on ligand exchange under ambient conditions. Using monochromated electron energy-loss spectroscopy, the strong infrared plasmon absorption of single 4H gold nanoribbons is observed. Furthermore, the 4H hexagonal phases of silver, palladium and platinum can be readily stabilized through direct epitaxial growth of these metals on the 4H gold nanoribbon surface. Our findings may open up new strategies for the crystal phase-controlled synthesis of advanced noble metal nanomaterials.

Bibliography

Fan, Z., Bosman, M., Huang, X., Huang, D., Yu, Y., Ong, K. P., Akimov, Y. A., Wu, L., Li, B., Wu, J., Huang, Y., Liu, Q., Eng Png, C., Lip Gan, C., Yang, P., & Zhang, H. (2015). Stabilization of 4H hexagonal phase in gold nanoribbons. Nature Communications, 6(1).

Authors 16
  1. Zhanxi Fan (first)
  2. Michel Bosman (additional)
  3. Xiao Huang (additional)
  4. Ding Huang (additional)
  5. Yi Yu (additional)
  6. Khuong P. Ong (additional)
  7. Yuriy A. Akimov (additional)
  8. Lin Wu (additional)
  9. Bing Li (additional)
  10. Jumiati Wu (additional)
  11. Ying Huang (additional)
  12. Qing Liu (additional)
  13. Ching Eng Png (additional)
  14. Chee Lip Gan (additional)
  15. Peidong Yang (additional)
  16. Hua Zhang (additional)
References 51 Referenced 246
  1. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013). (10.1038/nmat3700) / Nat. Mater. by D Voiry (2013)
  2. Zhang, J., Xu, Q., Feng, Z., Li, M. & Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2 . Angew. Chem. Int. Ed. 47, 1766–1769 (2008). (10.1002/anie.200704788) / Angew. Chem. Int. Ed. by J Zhang (2008)
  3. Thelander, C., Caroff, P., Plissard, S., Dey, A. W. & Dick, K. A. Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett. 11, 2424–2429 (2011). (10.1021/nl2008339) / Nano Lett. by C Thelander (2011)
  4. Chen, C.-C., Herhold, A. B., Johnson, C. S. & Alivisatos, A. P. Size dependence of structural metastability in semiconductor nanocrystals. Science 276, 398–401 (1997). (10.1126/science.276.5311.398) / Science by C-C Chen (1997)
  5. Caroff, P. et al. Controlled polytypic and twin-plane superlattices in III-V nanowires. Nat. Nanotechol. 4, 50–55 (2009). (10.1038/nnano.2008.359) / Nat. Nanotechol. by P Caroff (2009)
  6. Park, C. H., Cheong, B.-H., Lee, K.-H. & Chang, K. J. Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Phys. Rev. B 49, 4485–4493 (1994). (10.1103/PhysRevB.49.4485) / Phys. Rev. B by CH Park (1994)
  7. Navrotsky, A., Mazeina, L. & Majzlan, J. Size-driven structural and thermodynamic complexity in iron oxides. Science 319, 1635–1638 (2008). (10.1126/science.1148614) / Science by A Navrotsky (2008)
  8. Wang, Z. et al. Morphology-tuned wurtzite-type ZnS nanobelts. Nat. Mater. 4, 922–927 (2005). (10.1038/nmat1522) / Nat. Mater. by Z Wang (2005)
  9. Nam, K. M. et al. Syntheses and characterization of wurtzite CoO, rocksalt CoO, and spinel Co3O4 nanocrystals: their interconversion and tuning of phase and morphology. Chem. Mater. 22, 4446–4454 (2010). (10.1021/cm101138h) / Chem. Mater. by KM Nam (2010)
  10. Kim, Y.-H., Jun, Y.-w., Jun, B.-H., Lee, S.-M. & Cheon, J. Sterically induced shape and crystalline phase control of GaP nanocrystals. J. Am. Chem. Soc. 124, 13656–13657 (2002). (10.1021/ja027575b) / J. Am. Chem. Soc. by Y-H Kim (2002)
  11. Kim, J., Lee, Y. & Sun, S. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 132, 4996–4997 (2010). (10.1021/ja1009629) / J. Am. Chem. Soc. by J Kim (2010)
  12. Kusada, K. et al. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method. J. Am. Chem. Soc. 135, 5493–5496 (2013). (10.1021/ja311261s) / J. Am. Chem. Soc. by K Kusada (2013)
  13. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009). (10.1002/anie.200802248) / Angew. Chem. Int. Ed. by Y Xia (2009)
  14. Daniel, M.-C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004). (10.1021/cr030698+) / Chem. Rev. by M-C Daniel (2004)
  15. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J. & El-Sayed, M. A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012). (10.1039/C1CS15237H) / Chem. Soc. Rev. by EC Dreaden (2012)
  16. Turkevich, J., Stevenson, P. C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951). (10.1039/df9511100055) / Discuss. Faraday Soc. by J Turkevich (1951)
  17. Masuda, H. & Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995). (10.1126/science.268.5216.1466) / Science by H Masuda (1995)
  18. Jana, N. R., Gearheart, L. & Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065–4067 (2001). (10.1021/jp0107964) / J. Phys. Chem. B by NR Jana (2001)
  19. Nikoobakht, B. & El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003). (10.1021/cm020732l) / Chem. Mater. by B Nikoobakht (2003)
  20. Millstone, J. E. et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 127, 5312–5313 (2005). (10.1021/ja043245a) / J. Am. Chem. Soc. by JE Millstone (2005)
  21. Shankar, S. S. et al. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3, 482–488 (2004). (10.1038/nmat1152) / Nat. Mater. by SS Shankar (2004)
  22. Lu, X., Yavuz, M. S., Tuan, H.-Y., Korgel, B. A. & Xia, Y. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine−AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 130, 8900–8901 (2008). (10.1021/ja803343m) / J. Am. Chem. Soc. by X Lu (2008)
  23. Wang, C., Hu, Y., Lieber, C. M. & Sun, S. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 130, 8902–8903 (2008). (10.1021/ja803408f) / J. Am. Chem. Soc. by C Wang (2008)
  24. Huo, Z., Tsung, C.-k., Huang, W., Zhang, X. & Yang, P. Sub-two nanometer single crystal Au nanowires. Nano Lett. 8, 2041–2044 (2008). (10.1021/nl8013549) / Nano Lett. by Z Huo (2008)
  25. Zhang, J. et al. Sonochemical formation of single-crystalline gold nanobelts. Angew. Chem. Int. Ed. 118, 1134–1137 (2006). (10.1002/ange.200503762) / Angew. Chem. Int. Ed. by J Zhang (2006)
  26. Kim, F., Connor, S., Song, H., Kuykendall, T. & Yang, P. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 116, 3759–3763 (2004). (10.1002/ange.200454216) / Angew. Chem. Int. Ed. by F Kim (2004)
  27. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002). (10.1126/science.1077229) / Science by Y Sun (2002)
  28. Taneja, P., Banerjee, R., Ayyub, P. & Dey, G. K. Observation of a hexagonal (4H) phase in nanocrystalline silver. Phys. Rev. B 64, 033405 (2001). (10.1103/PhysRevB.64.033405) / Phys. Rev. B by P Taneja (2001)
  29. Liu, X., Luo, J. & Zhu, J. Size effect on the crystal structure of silver nanowires. Nano Lett. 6, 408–412 (2006). (10.1021/nl052219n) / Nano Lett. by X Liu (2006)
  30. Chakraborty, I. et al. Novel hexagonal polytypes of silver: growth, characterization and first-principles calculations. J. Phys. Condens. Matter 23, 325401 (2011). (10.1088/0953-8984/23/32/325401) / J. Phys. Condens. Matter by I Chakraborty (2011)
  31. Chakraborty, I., Shirodkar, N. S., Gohil, S., Waghmare, V. U. & Ayyub, P. The nature of the structural phase transition from the hexagonal (4H) phase to the cubic (3C) phase of silver. J. Phys. Condens. Matter 26, 115405 (2014). (10.1088/0953-8984/26/11/115405) / J. Phys. Condens. Matter by I Chakraborty (2014)
  32. Chakraborty, I., Shirodkar, N. S., Gohil, S., Waghmare, V. U. & Ayyub, P. A stable, quasi-2D modification of silver: optical, electronic, vibrational and mechanical properties, and first principles calculations. J. Phys. Condens. Matter 26, 025402 (2014). (10.1088/0953-8984/26/2/025402) / J. Phys. Condens. Matter by I Chakraborty (2014)
  33. Huang, X. et al. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2, 292 (2011). (10.1038/ncomms1291) / Nat. Commun. by X Huang (2011)
  34. Loubat, A. et al. Growth and self-assembly of ultrathin Au nanowires into expanded hexagonal superlattice studied by in situ SAXS. Langmuir 30, 4005–4012 (2014). (10.1021/la500549z) / Langmuir by A Loubat (2014)
  35. Huang, X. et al. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. Adv. Mater. 24, 979–983 (2012). (10.1002/adma.201104153) / Adv. Mater. by X Huang (2012)
  36. Sebastian, M. T. X-ray diffraction effects from 2H crystals undergoing transformation to the 4H structure by the shear mechanism. Cryst. Res. Technol. 22, 441–447 (1987). (10.1002/crat.2170220325) / Cryst. Res. Technol. by MT Sebastian (1987)
  37. Palosz, B., Steurer, W. & Schulz, H. The structure of PbI2 polytypes 2H and 4H: a study of the 2H-4H transition. J. Phys. Condens. Matter 2, 5285 (1990). (10.1088/0953-8984/2/24/001) / J. Phys. Condens. Matter by B Palosz (1990)
  38. Bauer, R., Jägle, E. A., Baumann, W. & Mittemeijer, E. J. Kinetics of the allotropic hcp–fcc phase transformation in cobalt. Phil. Mag. 91, 437–457 (2010). (10.1080/14786435.2010.525541) / Phil. Mag. by R Bauer (2010)
  39. Limpijumnong, S. & Lambrecht, W. R. L. Theoretical study of the relative stability of wurtzite and rocksalt phases in MgO and GaN. Phys. Rev. B 63, 104103 (2001). (10.1103/PhysRevB.63.104103) / Phys. Rev. B by S Limpijumnong (2001)
  40. Titmuss, S., Wander, A. & King, D. A Reconstruction of clean and adsorbate-covered metal surfaces. Chem. Rev. 96, 1291–1306 (1996). (10.1021/cr950214c) / Chem. Rev. by S Titmuss (1996)
  41. Harris, P. J. F. Sulphur-induced faceting of platinum catalyst particles. Nature 323, 792–794 (1986). (10.1038/323792a0) / Nature by PJF Harris (1986)
  42. Vericat, C., Vela, M. E., Benitez, G., Carro, P. & Salvarezza, R. C. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 39, 1805–1834 (2010). (10.1039/b907301a) / Chem. Soc. Rev. by C Vericat (2010)
  43. Bosman, M. et al. Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures. Sci. Rep. 4, 5537 (2014). (10.1038/srep05537) / Sci. Rep. by M Bosman (2014)
  44. Palik, E. D. Handbook of Optical Constants of Solids Academic Press (1997).
  45. Hövel, M., Gompf, B. & Dressel, M. Dielectric properties of ultrathin metal films around the percolation threshold. Phys. Rev. B 81, 035402 (2010). (10.1103/PhysRevB.81.035402) / Phys. Rev. B by M Hövel (2010)
  46. Bosman, M. & Keast, V. J. Optimizing EELS acquisition. Ultramicroscopy 108, 837–846 (2008). (10.1016/j.ultramic.2008.02.003) / Ultramicroscopy by M Bosman (2008)
  47. Blaha, P., Schwarz, K., Madsen, G. K., Kvasnicka, H. D. & Luitz, J. WIEN2k, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties Vienna University of Technology (2009).
  48. Ambrosch-Draxl, C. & Sofo, J. O. Linear optical properties of solids within the full-potential linearized augmented planewave method. Comp. Phys. Commun. 175, 1–14 (2006). (10.1016/j.cpc.2006.03.005) / Comp. Phys. Commun. by C Ambrosch-Draxl (2006)
  49. Abt, R., Ambrosch-Draxl, C. & Knoll, P. Optical response of high temperature superconductors by full potential LAPW band structure calculations. Phys. B 194–196, 1451–1452 (1994). (10.1016/0921-4526(94)91225-4) / Phys. B by R Abt (1994)
  50. Jackson, J. D. Classical Electrodynamics J. Wiley & Sons (1999).
  51. García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010). (10.1103/RevModPhys.82.209) / Rev. Mod. Phys. by FJ García de Abajo (2010)
Dates
Type When
Created 10 years ago (July 28, 2015, 6:15 a.m.)
Deposited 2 years, 7 months ago (Jan. 5, 2023, 6:21 a.m.)
Indexed 4 weeks, 2 days ago (July 22, 2025, 7:02 a.m.)
Issued 10 years ago (July 28, 2015)
Published 10 years ago (July 28, 2015)
Published Online 10 years ago (July 28, 2015)
Funders 0

None

@article{Fan_2015, title={Stabilization of 4H hexagonal phase in gold nanoribbons}, volume={6}, ISSN={2041-1723}, url={http://dx.doi.org/10.1038/ncomms8684}, DOI={10.1038/ncomms8684}, number={1}, journal={Nature Communications}, publisher={Springer Science and Business Media LLC}, author={Fan, Zhanxi and Bosman, Michel and Huang, Xiao and Huang, Ding and Yu, Yi and Ong, Khuong P. and Akimov, Yuriy A. and Wu, Lin and Li, Bing and Wu, Jumiati and Huang, Ying and Liu, Qing and Eng Png, Ching and Lip Gan, Chee and Yang, Peidong and Zhang, Hua}, year={2015}, month=jul }